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Welcome

This effect sizes and confidence intervals collaborative guide aims to provide academics, stu-
dents and researchers with hands-on, step-by-step instructions for calculating effect sizes and
confidence intervals for common statistical tests used in the behavioral, cognitive and social
sciences, particularly when original data are not available and when reported information is
incomplete. It also introduces general background information on effect sizes and confidence
intervals, as well as useful R packages for their calculation. Many of the methods and proce-
dures described in this Guide are based onR or R-based Shiny Apps developed by the science
community. We were motivated to focus on R as we aim to maximize the reproducibility of our
research outcomes and encourage the most reproducible study planning and data analysis
workflow, though we also document other methods whenever possible for the reference of
our readers. We regularly update this open educational resource, as packages are updated
frequently and new packages are developed from time to time in this rapidly changing Open
Scholarship era.

Introduction

Effect sizes and confidence intervals are critical metrics for interpreting results and quantify-
ing the magnitude of findings in scientific research. However, calculating these values can
be challenging, particularly when original data are unavailable or results are incompletely re-
ported in prior publications. To address this need, our collaborative guide provides hands-on
instructions for calculating effect sizes and confidence intervals for common statistical tests in
the behavioral, cognitive, and social sciences. Our guide includes background information on
these concepts as well as recommendations for useful R packages that can automate many
of these computations. R is emphasized due to its capabilities for reproducible analyses;
however, we also cover alternative methods for those without expertise in R. This guide is in-
tended to be an evolving open educational resource, updated as new methods and packages
become available in this fast-changing era of open scholarship. By compiling these applied
instructions, our goal is to enable students and researchers to easily obtain these metrics,
facilitating robust and transparent quantification of results, as well as cumulative scientific
progress.
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Guidelines for contribution

All are encouraged to contribute to this Guide. Please note that this Guide is in continuous
development such that it will remain a work in progress for an indefinite period of time. This
is intended because we hope the Guide to always reflect the state of the art on the topics of
effect sizes and confidence intervals. To contribute, there are now two options:

1. You can suggest edits andmake comments in the following google doc: mgto.org/effectsizeguide.
2. You can suggest edits directly in the online book using Hypothes.is. To do this you will

need to create a free account on hypothes.is (hypothes.is/signup; this will take about a
minute). Then when you navigate to the online book, you can open the panel on the top
right of the screen. There you can suggest edits and create comments with code and
latex!

Notes

• Please use the headings and style as set forth in this document. You can use keyboard
shortcuts such as Ctrl + Alt + 1/2/3. The normal text is in Times New Roman font, font
size 11. The codes are formatted using the Code Blocks add-on of Google Docs, github
theme, font size 8.

• Use the Suggesting mode rather than the Editing mode. Suggesting is now the default
mode for this document. Therefore, please do not hesitate to correct mistakes or modify
the contents directly.

• Add a comment to the document if you find anything missing or improper, or if you feel
that things are better organized in a different way. We appreciate your suggestions. If
you have any questions, please also add a comment. We will reply and seek to clarify
in the document body.

• Please make proper citations (in APA 7th format) and provide relevant links when you
refer to any source that is not your own.

Credit and authorship

If you believe you have made sufficient contribution that qualifies you as an author, and you
would like to be listed as an author of this Guide, please do not hesitate and list your name
and contact information below. The administrators (M. B. J., Q. X., S. K. Y., and G. F.) of
this Guide will verify your contribution and add you to the author list. We welcome comments
from any person, regardless of whether they want to be an author. You are also welcome to
request content to be added to this Guide (please see the Things to add to the guide section
in the end).
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The authorship order is such that M. B. J. and Q. X. will be the first two authors, S. K. Y. will be
second author, and G. F. will be the last and the corresponding author. All other contributors
will be listed alphabetically in the middle and are all considered joint third authors. Contributors
are by default given investigation, writing - original draft, and writing - review & editing CRediT
authorship roles. It is possible to take on more roles if contributors prefer. Any change in this
authorship order rule will have to be approved by all who are already listed as an author.

Cite this guide

Cite this guide with the following citation:

APA:

Jané, M., Xiao, Q., Yeung, S., *Ben-Shachar, M. S., *Caldwell, A., *Cousineau, D., *Dunleavy,
D. J., *Elsherif, M., *Johnson, B., *Moreau, D., *Riesthuis, P., *Röseler, L., *Steele, J., *Vieira,
F., *Zloteanu, M., & ^Feldman, G. (2024). Guide to Effect Sizes and Confidence Intervals.
http://dx.doi.org/10.17605/OSF.IO/D8C4G

BibTeX:

@misc{jané2024,
title={Guide to Effect Sizes and Confidence Intervals},
url={osf.io/d8c4g},
DOI={10.17605/OSF.IO/D8C4G},
publisher={OSF},
author={Jané, Matthew B and Xiao, Qinyu and Yeung, Siu Kit and *Ben-Shachar, Mattan S and Caldwell, Aaron R and Cousineau, Denis and Dunleavy, Daniel J and Elsherif, Mahmoud M and Johnson, Blair T and Moreau, David and Riesthuis, Paul and Röseler, Lukas and Steele, James and Vieira, Felipe F and Zloteanu, Mircea and Feldman, Gilad},
year={2024}

}
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1 Defining Effect Sizes

Effect sizes quantify the magnitude of effects (i.e., strength of a relationship, size of a differ-
ence), which are the outcomes of our empirical research. Effect sizes are by no means a new
concept. However, reporting them remained largely optional for many years, and only until
recently does it become a community standard: scientists now see reporting effect sizes (in ad-
dition to the traditional statistical significance) as a must and journals also start to require such
reporting. Notably, in 2001 and 2010, The Publication Manual of the American Psychological
Association 5th and 6th editions emphasized that it is “almost always necessary” (Divine et al.
2018) to report effect sizes (APA 2010, 34; see Fritz, Morris, and Richler 2012, which provides
a comprehensive summary on history and importance of effect size reporting).

Effects sizes can be grouped in broad categories as (1) raw effect sizes, and (2) standardized
effect sizes. The raw effect sizes are a summary of the results that are expressed in the same
units as the raw data. For example, when kilograms are measured, a raw effect size reports
a measure in kilograms. Consider the effect of a diet on a treatment group; a control group
receives no diet. The change in weight can be expressed as the mean difference between
the groups. This measure is also in kg and so is a raw effect size. Standardized effect sizes
expressed on a standardized scale where units are expressed as standard deviations (i.e.,
z-scores). Standardized effect sizes tend to be more comparable across studies that use
different measures or unit scales.
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2 Benchmarks

What makes an effect size “large” or “small” is completely dependent on the context of the
study in question. However, it can be useful to have some loose criterion in order to guide
researchers in effectively communicating effect size estimates. Jacob Cohen (1988), the pi-
oneer of estimation statistics, suggested many conventional benchmarks (i.e., how we refer
to an effect size other than using a number) that we currently use. However, Cohen (1988)
noted that labels such as “small”, “medium”, and “large” are relative, and in referring to the
size of an effect, the discipline, the context of research, as well as the research method and
goals, should take precedence over benchmarks any time it’s possible. There are general
differences in effect sizes across different disciplines, and within each discipline, effect sizes
differ depending on study designs and research methods (Schäfer and Schwarz 2019) and
goals; as Glass, McGaw, and Smith (1981) explains:

Depending on what benefits can be achieved at what cost, an effect size of 2.0
might be “poor” and one of .1 might be “good.”

Therefore, it is crucial to recognize that benchmarks are only general guidelines, and impor-
tantly, out of context. They also tend to attract controversy (Glass, McGaw, and Smith 1981;
Kelley and Preacher 2012; Harrell 2020). Note that field-specific empirical benchmarks have
been suggested by researchers. For social psychology, these alternative benchmarks ob-
tained through meta-analyzing the literature (for example, this and this; see this Twitter/X
thread for a summary) are typically smaller than what Cohen put forward. Although such field-
specific effect size distributions can provide an overview of the observed effect sizes, it does
not provide a good interpretation of the magnitude of the effect (see Panzarella, Beribisky,
and Cribbie 2021). To examine the magnitude of the effect, the specific context of the study
at hand needs to be taken into account (pp. 532-535, Cohen 1988). Please refer to the table
below:

Effect Size Reference Small Medium Large

Mean Differences
Cohen’s 𝑑 or Hedges’ 𝑔 Cohen (1988)1 0.20 0.50 0.80

0.18 0.37 0.60

1Sawilowsky (2009) expanded Cohen’s benchmarks to include very small effects (𝑑 = 0.01), very large effects
(𝑑 = 1.20), and huge effects (𝑑 = 2.0). It has to be noted that very large and huge effects are very rare in
experimental social psychology.
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Effect Size Reference Small Medium Large

Lovakov and
Agadullina
(2021)2

0.15 0.36 0.65

Correlational
Correlation Coefficient (𝑟) Cohen (1988) .10 .30 .50

Richard, Bond
Jr., and
Stokes-Zoota
(2003)34

.10 .20 .30

Lovakov and
Agadullina
(2021)

.12 .24 .41

Paterson et al.
(2016)

.12 .20 .31

Bosco et al.
(2015)

.09 .18 .26

Cohen’s 𝑓2 .02 .25 .40
eta-squared (𝜂2) Cohen (1988) .01 .06 .14
Cohen’s f Cohen (1988) .10 .25 .40
Categorical
Cohen’s 𝑤 Cohen (1988) 0.10 0.30 0.50
Phi Cohen (1988) .10 .30 .50
Cramer’s 𝑉 5

Cohen’s ℎ Cohen (1988) 0.2 0.5 0.8

2According to this recent meta-analysis on the effect sizes in social psychology studies, “It is recommended that
correlation coefficients of .1, .25, and .40 and Hedges’ 𝑔 (or Cohen’s 𝑑) of 0.15, 0.40, and 0.70 should be
interpreted as small, medium, and large effects for studies in social psychology.

3Note, for paired samples, this does not refer to the probability of an increase/decrease in paired samples but
rather the probability of a randomly sampled value of X. This is also referred to as the “relative” effect in the
literature. Therefore, the results will differ from the concordance probability provided below.

4These benchmarks are also recommended by Gignac and Szodorai (2016). Funder and Ozer (2019) expanded
them to also include very small effects (𝑟 = .05) and very large effects (𝑟 = .40 or greater). According to them,
[…] an effect-size 𝑟 of .05 indicates an effect that is very small for the explanation of single events but potentially
consequential in the not-very-long run, an effect-size r of .10 indicates an effect that is still small at the level of
single events but potentially more ultimately consequential, an effect-size 𝑟 of .20 indicates a medium effect
that is of some explanatory and practical use even in the short run and therefore even more important, and an
effect-size 𝑟 of .30 indicates a large effect that is potentially powerful in both the short and the long run. A very
large effect size (r = .40 or greater) in the context of psychological research is likely to be a gross overestimate
that will rarely be found in a large sample or in a replication.” But see here for controversies with this paper.

5The benchmarks for Cramer’s V are dependent on the size of the contingency table on which the effect is
calculated. According to Cohen, use benchmarks for phi coefficient divided by the square root of the smaller
dimension minus 1. For example, a medium effect for a Cramer’s V from a 4 by 3 table would be .3 / sqrt(3 -
1) = .21.
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It should be noted that small/medium/large effects do not necessarily mean that they have
small/medium/large practical implications (for details see, Coe 2012; Pogrow 2019). These
benchmarks are more relevant for guiding our expectations. Whether they have practical im-
portance depends on contexts. To assess practical importance, it will always be desirable for
standardized effect sizes to be translated to increase/decrease in raw units (or any meaningful
units) or a Binomial Effect Size Display (roughly, differences in proportions such as success
rate before and after intervention). The reporting of unstandardardized effect sizes is not only
beneficial for interpretation but they are also more robust and more easy to compute (Baguley
2009). Additionally, a useful tool to examine, for example, the magnitude of a Cohen’s d is
by examining U3, percentage overlap, probability of superiority, and numbers needed to treat
(For nice visualizations see https://rpsychologist.com/cohend/, Magnusson 2023).

To further assess the practical importance of observed effect sizes, it is necessary to estab-
lish the smallest effect size of interest for each specific field (SESOI, Lakens, Scheel, and
Isager 2018). Cohen’s benchmarks, field-specific benchmarks, or published findings are not
preferred to establish the SESOI because they do not convey information about the practical
relevance/magnitude of an effect size (Panzarella, Beribisky, and Cribbie 2021). Recent devel-
opments in various areas of research in psychology have been taken to establish the SESOI
through anchor-based methods (Anvari and Lakens 2021), consensus-methods (Riesthuis
et al. 2022), and cost-benefit analyses (see Otgaar et al. 2022, 2023). These approaches
are frequently implemented successfully in medical research (e.g., HEIJDE et al. 2001) and
recommendations are to, ideally, implement the various methods simultaneously to obtain a
precise estimate of the smallest effect size of interest (termed minimally clinically important
difference in the medical literature, Bonini et al. 2020). Interestingly, the minimally clinically
important difference (MCID, smallest effect which patients perceive as beneficial [or harmful],
McGlothlin and Lewis 2014) is sometimes even deemed as a low bar and other measures
are encouraged such as patient acceptable symptomatic state (PASS, level of symptoms a
patients allows while still accept their symptom state, this can be used to examine whether a
certain treatment leads to a state that patients consider acceptable, Daste et al. 2022), sub-
stantial clinical benefit (SCB, effect that leads patient to self-report significant improvements,
Wellington et al. 2023), and maximal outcome improvement (MOI, similar to MCID, PASS,
and SCB, except that the scores are normalized by the maximal improvement possible for
each patient, Beck et al. 2020; Rossi, Brand, and Lubowitz 2023).

Please also note that only zero means no effect. An effect of the size .01 is an effect,
but a very small (Sawilowsky 2009), and likely unimportant one. It makes sense to say that
“we failed to find evidence for rejecting the null hypothesis,” or “we found evidence for only
a small/little/weak-to-no effect” or “we did not find a meaningful effect”. It does not make
sense to say, “we found no effect.” Purely by the random nature of our universe, it is
hard to imagine that we can obtain a sharp zero-effect result. This is also related to the crud
factor, which refers to the idea that “everything correlates with everything else” (Orben and
Lakens 2020, 1; Meehl 1984), but the practical implication of very weak/small correlations
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between some variables may be limited, and whether the effect is reliably detected depends
on statistical power.
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3 Reporting Effect Sizes

When reporting effect sizes, it is important to provide sufficient detail and context to ensure
transparency, convey directionality, and indicate precision. Transparency involves clearly doc-
umenting procedures and data so that others can reproduce your effect size calculations. Next,
for directional effects like Cohen’s d, make sure to define the direction of comparison and align
it with your hypothesis. Finally, indicate the precision of the estimate, typically by reporting
confidence intervals. Narrower confidence intervals reflect more precision, while wider inter-
vals reflect greater uncertainty (Winter, 2019). Factors like sample size, variability, and study
design influence precision. Reporting effect sizes thoughtfully with transparency, directional-
ity, and precision, enables readers to accurately interpret the meaningfulness and implications
of your results. In the following sections, we provide recommendations to optimize reporting
on each of these factors.

Not all CIs are created equal.

Confidence Intervals only indicate parameter precision under specific assumptions.
Some have even titled this issue as the precision fallacy (Morey et al. 2016). For the
same data, CIs can be computed in various ways resulting in wildly different intervals
(see the submarine example in Morey et al. 2016). Such CIs are computed by inverting
hypothesis tests (using the p-value obtained from a model); see this discussion by Gel-
man (2011). Under this approach, the CI reflects the data andmodel (+assumptions), not
just the parameter estimate. If one is using an improper model, the associated CI will be
misleading and its width will not reflect precision or uncertainty. The solution is to com-
pute CIs based on the data at hand, such as constructing parametric (if the distribution is
known) or non-parametric (empirical distribution) bootstrapped CIs, or understand that
your CIs are conditional on the model you used. That said, for CIs computed for effect
sizes like Cohen’s d, which assume a Gaussian distribution, the precision fallacy should
not be a problem and can be used to infer precision (see this forum discussion).

3.1 Transparency

When reporting effect sizes and their calculations, you should prioritize transparency and re-
producibility. No matter what tool you used to calculate your effect size (R is the most rec-
ommended tool here), you must make sure that others can easily follow your procedures and

15

https://stats.stackexchange.com/questions/204530/what-do-confidence-intervals-say-about-precision-if-anything


obtain the same results. This means that if you use online calculators (which is discouraged)
or standalone programs (JAMOVI is most recommended; you can also use JASP, which how-
ever does not allow access to syntax at this moment), you should include screenshots that
capture the input and output, with clear explanations. If you use R, Python or other program-
ming languages, you should copy-and-paste your codes into your supplementary document
(or submit your scripts to open online repositories), ideally with annotations and comments
explaining the codes. inputs and outputs.

3.2 Directionality

Some effect sizes are directional (e.g., Cohen’s 𝑑, Pearson correlations 𝑟), which means that
they can be positive or negative. Their signs carry important information, and therefore cannot
be omitted. When you report these effect sizes, make it clear what is compared to what (i.e.,
the direction of comparison). Better still, make sure your comparison is inline with the theory.
For instance, a theory predicts that your group X should score higher on an item than your
Group Y,1 you should hypothesize accordingly that Group X will have a higher mean than
Group Y on the item, and subtract mean(Y) from mean(X) (rather than the other way around)
to obtain the mean difference. You should then expect your 𝑡 statistic to be positive, and your
𝑑 value as well. In other words, avoid reporting anything like 𝑡 = -5.14, 𝑑 = 0.36, where the
signs of the statistics do not match.

3.3 Precision

Effect sizes may be very precisely estimated from the available data, the used methodology,
and how the population was sampled. It might also be estimated with little confidence on the
resulting number. This may be the case for example when the sample is very small, when
the population displays a lot of variability, when a between-group design is used instead of
a paired-sample design, and finally, when clustered sampling is used instead of randomized
sampling. Precision can be estimated using various tools, but probably the most commonly
used one is the Confidence intervals. This interval has a confidence level, frequently 95%.

1Of course, if a theory/effect predicts Group X has a higher mean than Group Y, then it also predicts the reverse,
i.e., Group Y has a lower mean than Group X. But theories/effects are commonly articulated in a certain way.
It is more common that we say, for example, people prefer the status quo rather than that people do not prefer
the non-status quo, when we refer to the status quo bias. Consider another “theory”: teenagers get taller when
they get older. It just does not make sense to say the same thing reversely, i.e., teenagers get shorter when
they get younger, because people cannot get younger, at least in the 2020s.
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4 Interpreting Confidence Intervals

What is the correct interpretation of a confidence interval? Imagine you conducted a study
where you compared two groups. You obtained a Cohen’s 𝑑 = 0.3, 95% CI [0.2, 0.4]. How do
you interpret this confidence interval?

Confidence intervals are yielded by a certain procedure, such that when the procedure
is repeatedly applied to a series of hypothetical datasets drawn from the studied popula-
tion/populations, it yields intervals that contain the true parameter value (in our example,
it means the true difference between the two groups) in 95% of the cases. For the effect
estimate and confidence intervals to be valid, the data and test must meet the assumptions
of the estimating procedure.

In colloquial terms, if we conduct this research over and over (repeating the same sampling
procedure, administering the same experimental manipulation, conducting the same statistical
analysis, etc.), because of sampling variability (our samples are slightly different at each time),
we will get different Cohen’s 𝑑 values. For each of these 𝑑 values, we calculate a 95% interval.
Then, among all these many intervals, we expect that 95% of them will contain the true 𝑑,
which we never know exactly.

There is also a common criticism levied against the confidence interval interpretation: “There
is a 95% probability that the true parameter exists within the 95% confidence interval”. How-
ever this criticism is unwarranted in the specific case of a single observed confidence interval,
that is, as long as there is a single realized confidence interval sampled from the population,
this interpretation is fine (Vos and Holbert 2022). It is important to note however, this inter-
pretation is incorrect when there are multiple realized confidence intervals randomly sampled
from the same population. The criticized interpretation also tends to be more practical than the
interpretation using repeated sampling, the following example described by Vos and Holbert
(2022) illustrates this,

The distinction between these interpretations can be understood with the simple
example of the probability of rolling a ‘6’ with a fair die. The probability is 1/6
because if you roll the die repeatedly the proportion of times that the face with ‘6’
comes up will be come very close to 1/6. Or, the probability is 1/6 because it is
equivalent to a random selection from an urn where exactly one of 6 balls is labelled
with ‘6’. The distinction in this simple example is less useful since repeatedly rolling
a die is less problematic than repeatedly conducting the same randomized trial.
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For further reading on confidence interpretations, see Hoekstra et al. (2014) and Morey et al.
(2016).
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5 Reporting Confidence Intervals

Confidence intervals must be calculated and reported for every effect size that you obtained
and mentioned in your manuscript. If you are doing a replication and your target article/study
did not report CIs for its effect sizes, you should calculate CIs and report them.

Normally, we calculate 95% confidence intervals (i.e., 95% of such intervals are expected to
contain the true parameter value if we conduct an infinite number of identical studies).

Alpha level

The confidence interval depends on the alpha level, that is, the proportion of CIs upon
repeated sampling that will not contain the true parameter. If the true effect is zero (or
null), the the alpha level represents the false positive rate (i.e., the rate of observing a
significant effect when there is none). The 95% CI is based on an alpha level of .05,
however researchers can choose any value (between 0 and 1), as long as it is properly
justified (Lakens 2022).

Nonetheless, for some effect sizes (e.g., eta-squared, partial eta-squared, R-squared), we
calculate 90% confidence intervals. This is because 𝜂2 is squared and always positive, and
F-tests are one-sided. Reporting 95% CI for eta squared may result in situations in which the
CI includes zero but the p-value falls below .05, whereas reporting 90% CI prevents such a
problem. For further information regarding this issue, read Daniel Lakens blog on confidence
intervals and Steiger (2004).

Confidence intervals should be reported immediately after an effect size, e.g., Cohen’s d =
0.40, 95%CI [0.20, 0.60]. After the first time reporting them in a manuscript, every subsequent
CI can be simply denoted by brackets without the “95% CI” preceding it.

Unless you are measuring something that is meaningful in real life (e.g., income, years of
experience, amount that a person is willing to donate), please make sure that the CI you
calculated is a CI of the effect size, not of other statistics, such as the test statistics or mean
difference in raw units.

If you see that the effect size estimate is not included within your CI, you likely have an issue,
check carefully. For means and for difference in means, the estimate should be precisely
the midpoint of your CI; for other statistics (e.g., correlation, proportion, frequency, standard
deviation), one arm might be longer than the other so the estimate may not be the midpoint.
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For further reading related to the calculation and reporting of effect sizes and confidence
intervals, see Steiger (2004) and Lakens (2014).
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6 Using R

6.1 Why Use R?

We strongly recommend using open-source software such as R or Python for computing effect
sizes and confidence intervals. In this guide, we focus on R, which has several advantages:

• Reproducibility: R syntax can be shared to allow others to reproduce your analyses.
This promotes transparency and reliability in research.

• Flexibility: CRAN repositories contain thousands of user-contributed packages for spe-
cialized statistical techniques. This allows calculating a diverse range of effect size and
CI metrics.

• Free and open source: R is free to download and use. The open source nature means
community-driven innovation and packages.

• Visualizations: R makes it easy to create publication-quality graphics to visualize your
results.

• Scripting: Automating analyses through R scripts improves efficiency and consistency.

• Range of packages: Packages like effectsize, MBESS, metafor, and more contain a
variety of effect size and CI functions.

Many (if not all) of these advantages are shared with Python and a number of other pro-
gramming languages. While online calculators or GUI software can also allow calculating
confidence intervals and effect sizes, open-source software such as R provide transparency,
reproducibility, and access to a vast array of techniques. In the case of R, the learning curve is
well worth it for doing robust, state-of-the-art effect size and confidence interval estimation.

6.2 Useful R Packages

The following R packages are handy for effect size and CI calculations, conversions among
different effect sizes, and conversion of test statistics to effect sizes. If you use one of the
packages below, please make sure you cite them to give the authors their due credit! To
obtain citations for packages, you can use the citation() function and input the name of the
package as a string.
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• MOTE (Buchanan et al. 2019): This is a highly recommended package for calculating
effect sizes, which is capable of handling a wide variety of effect sizes in the difference
family (the d family) and variance-overlap family (r, eta, omega, epsilon). The functions
also provide non-central confidence intervals for each effect size and output in APA
style in LaTeX. MOTE has an online shiny application (doomlab.shinyapps.io/mote/). The
CRAN project can be found here: cran.r-project.org/package=MOTE.

• effectsize (Ben-Shachar, Lüdecke, and Makowski 2020): This package is particularly
useful in data analysis. A major advantage of this package is that it takes in many
different model objects and directly outputs effect sizes and CIs. It also implements con-
versions between a wide array of indices and features functions to perform automated
effect size interpretations based on existing benchmark thresholds. The CRAN project
can be found here: cran.r-project.org/package=effectsize.

• MBESS (Kelley 2022): One of the most comprehensive and useful packages for effect
size and confidence interval calculations. It provides functions that can calculate ESs
and CIs from test statistics and the p-value. The CRAN project can be found here:
cran.r-project.org/package=MBESS.

• metafor (Viechtbauer 2010): Probably the most comprehensive meta-analysis package
currently available. Includes the function, escalc(), that calculates various types of
effect sizes from test-statistics, summary statistics, and more. The CRAN project can
be found here: cran.r-project.org/package=metafor.

• psych (William Revelle 2023): One of the most comprehensive and general packages
for common statistical procedures in psychology research. It also includes some effect
size and CI calculation functions (e.g., cohen.d()). The CRAN project can be found
here: cran.r-project.org/package=psych.

• esc (Lüdecke 2019): This package can help convert among different effect sizes (pp. 4-
12 in the reference manual). It’s also helpful when only incomplete information (e.g.,
only descriptives, or only p-values) have been provided in the paper, and we want to
calculate effect sizes from them. Another package that provides similar conversion
functions is the compute.es package. The CRAN project can be found here: cran.r-
project.org/package=esc.

• psychmeta (Dahlke and Wiernik 2019): This package is mainly used for psychometric
meta-analyses. It has a function for converting different effect sizes/test statistics (con-
vert_es, p. 38 in the reference manual), including 𝑟, 𝑑, 𝑡-statistic (and its p-value), 𝐹
(and its p-value in two-group one-way ANOVA), chi-squared (one degree of freedom),
etc., to 𝑟, 𝑑 and the common language effect sizes (CLES, A, AUC). The CRAN project
can be found here cran.r-project.org/package=psychmeta.

• effsize (Torchiano 2020): This is a relatively lightweight package that handles
d, g, Cliff delta, and Vargha-Delaney A). The CRAN project can be found here:
cran.r-project.org/package=effsize.
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• MAd (W. T. Hoyt 2014): This package is a collection of functions for conducting a meta-
analysis with mean differences data. It also provides conversion functions. The CRAN
project can be found here: cran.r-project.org/package=MAd.

• TOSTER (Läkens 2017; Caldwell 2022): This package is designed for equivalence testing.
It contains many functions to test for differences in effect sizes along with other useful
functions for effect size comparisons. The CRAN project can be found here: cran.r-
project.org/package=TOSTER.

• DeclareDesign (Blair et al. 2019): This simulation framework can be used to assess
whether procedures for calculating confidence intervals are valid and can be used for
arbitrary designs. The diagnose_design() function calculates coverage for designs
with estimation strategies that produce confidence intervals. The CRAN project can be
found here: cran.r-project.org/package=DeclareDesign.
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Part I

Standardized Effect Sizes
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7 Mean Differences

T-tests are the most commonly used statistical tests for examining differences between group
means, or examining a group mean against a constant. Calculating effect sizes for t-tests is
fairly straightforward. Nonetheless, there are cases where crucial figures for the calculation
are missing (which happens quite often in older articles), and therefore we document methods
that make use of partial information (e.g., only the M and the SD, or only the t-statistic and
df) for the calculation. There are multiple types of effect sizes used to calculate standardized
mean differences (i.e., Cohen’s 𝑑), yet researchers very often do not identify which type of 𝑑
value they are reporting (see Lakens 2013). Here we document the equations and code nec-
essary for calculating each type of 𝑑 value compiled across multiple sources (Becker 1988;
Cohen 1988; Lakens 2013; Caldwell 2022; Glass, McGaw, and Smith 1981). A 𝑑 value calcu-
lated from a sample will also contain sampling error, therefore we will also show the equations
to calculate the standard error. The standard allows us to then calculate the confidence in-
terval. For each formulation in the sections below, the confidence interval will be able to be
calculated in the same way, that is,

𝐶𝐼𝑑 = 𝑑 ± 1.96 × 𝑆𝐸 (7.1)

Lastly, we will supply example R code so you can apply to your own data.

Here is a table for every effect size discussed in this chapter:

Type Description Section

Single Group Design Section 7.2
𝑑𝑠 - Single Group Standardized mean difference for

comparing a single group to some
constant

Section 7.2

Two Independent
Groups Design

Section 7.3
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Type Description Section

𝑑𝑝 - Pooled Standard
Deviation

Uses the average within-group
standard deviation to standardize the
mean difference. Can be calculated
directly from a independent sample
t-test. Assumes homogeneity of
variance between groups.

Section 7.3.1

𝑑Δ - Control Group
Standard Deviation

Uses the standard deviation of the
control group to standardize the mean
difference (often referred to as
Glass’s Delta). Does not assume
homogeneity of variance between
treatment/intervention and control
group.

Section 7.3.2

Repeated Measures
(Paired Groups) Design

Section 7.4

𝑑𝑧 - Difference score
standard deviation

Uses the standard deviation of
difference scores (also known as
change scores) to standardize the
within person mean difference (i.e.,
pre/post change).

Section 7.4.1

𝑑𝑟𝑚 - Repeated
measures

Uses the within-person standard
deviation that utilizes a correction to
𝑑𝑧 to reduce the impact of the
pre/post correlation on the effect size.
Assumes homogeneity of variance
between conditions.

Section 7.4.2

𝑑𝑎𝑣 - Average variance Uses the pooled variance between
conditions (pre/post test). Does not
use the correlation between
conditions. Assumes homogeneity of
variance between conditions.

Section 7.4.3

𝑑𝑏 - Becker’s d Uses the pre-test standard deviation
to standardize the pre/post mean
difference. Does not assume
homogeneity of variance between
pre-test and post-test.

Section 7.4.4

Pre-Post-Control Design Section 7.5
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Type Description Section

𝑑𝑃𝑃𝐶1 - Separate
pre-test standard
deviations

Defined as the difference between the
Becker’s d between the treatment
and control group. Particularly,
standardizing the mean pre/post
change by the pre-test of the
respective group.

Section 7.5.1

𝑑𝑃𝑃𝐶2 - Pooled pre-test
standard deviation

Standardizes the difference in mean
changes between treatment and
control group. Assumes homogeneity
of variance between the pre-test of
the control and treatment condition.

Section 7.5.2

𝑑𝑃𝑃𝐶3 - Pooled pre-test
and post-test standard
deviation

Pools the standard deviation between
pre-test and post-test in treatment
and control condition. Assumes
homogeneity of variance between
pre/post-test scores and treatment
and control conditions. Confidence
intervals are not easy to compute.

Section 7.5.3

Mean Ratios Section 9.2.8
𝑙𝑛𝑅𝑅ind - Response ratio
between independent
groups

The ratio between the means
between two groups. Does not use
the standard deviation in the effect
size formula.

Section 7.7.1

𝑙𝑛𝑅𝑅dep - Response ratio
between dependent
groups

The ratio between the means
between conditions (i.e., repeated
measures). Does not use the
standard deviation in the effect size
formula.

Section 7.7.2

7.1 Reporting a t-test with effect size and CI

Whatever effect size and CI you choose to report, you can report it alongside the t-test statistics
(i.e., t-value and the p value). For example,

The treatment group had a significantly higher mean than the control group (t =
2.76, p = .009, n = 35, d = 0.47 [0.11, 0.81]).
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7.2 Single Group Designs

For a single group design, we have one group and we want to compare the mean of that group
to some constant,𝐶 (i.e., a target value). The standardized mean difference for a single group
can be calculated by (equation 2.3.3, Cohen 1988),

𝑑𝑠 = 𝑀 − 𝐶
𝑆1

(7.2)

A positive 𝑑𝑠 value would indicate that the mean is larger than the target value, 𝐶 . This
formulation assumes that the sample is drawn from a normal distribution. The standardizer
(i.e., the denominator) is the sample standard deviation. The corresponding standard error
for 𝑑𝑠 is (see documentation for Caldwell 2022),

𝑆𝐸𝑑𝑠
= √ 1

𝑛 + 𝑑2𝑠
2𝑛. (7.3)

In R, we can use the d.single.t function from the MOTE package to calculate the single group
standardized mean difference.

# Install packages if not already installed:
# install.packages('MOTE')
# Cohen's d for one group

# For example:
# Sample Mean = 30.4, SD = 22.53, N = 96
# Target Value, C = 15

library(MOTE)

stats <- d.single.t(
m = 30.4,
u = 15,
sd = 22.53,
n = 96

)

# print just the d value and confidence intervals
data.frame(d = apa(stats$d),

dlow = apa(stats$dlow),
dhigh = apa(stats$dhigh))
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d dlow dhigh
1 0.684 0.460 0.904

As you can see, the output shows that the effect size is 𝑑𝑠 = 0.68, 95% CI [0.46, 0.90]. Note
the apa function in MOTE takes a value and returns an APA formatted effect size value (i.e.,
leading zero and three decimal places).

7.3 Two Independent Groups Design

7.3.1 Standardize by Pooled Standard Deviation (𝑑𝑝)

For a two group design (i.e., between-groups design), we want to compare the means of two
groups (group 1 and group 2). The standardized mean difference between two groups can be
calculated by (equation 5.1, Glass, McGaw, and Smith 1981),

𝑑𝑝 = 𝑀1 − 𝑀2
𝑆𝑝

. (7.4)

A positive 𝑑𝑝 value would indicate that the mean of group 1 is larger than the mean of group 2.
Dividing the mean difference by the pooled standard deviation, 𝑆𝑝, is the classic formulation
of Cohen’s 𝑑. The pooled standard deviation, 𝑆𝑝, can be calculated as the square root of the
average variance (weighted by the degrees of freedom, 𝑑𝑓 = 𝑛 − 1) of group 1 and group
2 (pp. 108, Glass, McGaw, and Smith 1981):

𝑆𝑝 = √(𝑛1 − 1)𝑆2
1 + (𝑛2 − 1)𝑆2

2
𝑛1 + 𝑛2 − 2 (7.5)

Note that the term variance refers to the square of the standard deviation (𝑆2). Cohen’s 𝑑𝑝
has is related to the t-statistic from an independent samples t-test. In fact, we can calculate
the 𝑑𝑝 value from the 𝑡-statistic with the following formula (equation 5.3, Glass, McGaw, and
Smith 1981):

𝑑 = 𝑡√ 1
𝑛1

+ 1
𝑛2

. (7.6)

The corresponding standard error of 𝑑𝑝 is,
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𝑆𝐸𝑑𝑝
= √𝑛1 + 𝑛2

𝑛1𝑛2
+ 𝑑2𝑝

2(𝑛1 + 𝑛2). (7.7)

In R, we can use the d.ind.t function from the MOTE package to calculate the two group
standardized mean difference. Since we have already loaded in the MOTE package, we do not
need to again.

# Cohen's d for two independent groups
# given means and SDs

# For example:
# Group 1 Mean = 30.4, SD = 22.53, N = 96
# Group 2 Mean = 21.4, SD = 19.59, N = 96

stats <- d.ind.t(
m1 = 30.4,
m2 = 21.4,
sd1 = 22.53,
sd2 = 19.59,
n1 = 96,
n2 = 96,
a = 0.05

)

# print just the d value and confidence intervals
data.frame(d = apa(stats$d),

dlow = apa(stats$dlow),
dhigh = apa(stats$dhigh))

d dlow dhigh
1 0.426 0.140 0.712

The output shows that the effect size is 𝑑𝑝 = 0.43, 95% CI [0.14, 0.71].

7.3.2 Standardize by Control Group Standard Deviation (𝑑Δ)

When two groups differ substantially in their standard deviations, we can instead standardize
by the control group standard deviation (𝑆𝐶), such that,
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𝑑Δ = 𝑀𝑇 − 𝑀𝐶
𝑆𝐶

. (7.8)

Where the subscripts, 𝑇 and 𝐶 , denotes the treatment group and control group, respectively.
This formulation is commonly referred to as Glass’ Δ (Glass 1981). The standard error for
𝑑Δ can be defined as,

𝑆𝐸𝑑Δ
= √𝑛𝑇 + 𝑛𝐶

𝑛𝑇 𝑛𝐶
+ 𝑑2

Δ
𝑛𝐶 + 1 (7.9)

Notice that when we only standardize by the standard deviation of the control group (rather
than pooling), we he will have less degrees of freedom (𝑑𝑓 = 𝑛𝐶 − 1) and therefore more
sampling error than we do when we divide by the pooled standard deviation (𝑑𝑓 = 𝑛𝑇 +
𝑛𝐶 −2).In R, we can use the delta.ind.t.diff function from the MOTE package to calculate
𝑑Δ.

# Cohen's dz for difference scores
# given difference score means and SDs

# For example:
# Control group Mean = 30.4, SD = 22.53, N = 96
# Treatment group Mean = 21.4, SD = 19.59, N = 96
# correlation between conditions: r = .40

stats <- delta.ind.t(
m1 = 30.4,
m2 = 21.4,
sd1 = 22.53,
sd2 = 19.59,
n1 = 96,
n2 = 96,
a = 0.05

)

# print just the d value and confidence intervals
data.frame(d = apa(stats$d),

dlow = apa(stats$dlow),
dhigh = apa(stats$dhigh))

d dlow dhigh
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1 0.399 0.140 0.712

7.4 Repeated Measures Designs

In a repeated-measures design, the same subjects (or items, etc.) are measured on two or
more separate occasions, or in multiple conditions within a single session, and we want to
know the mean difference between those occasions or conditions (Baayen, Davidson, and
Bates 2008; Barr et al. 2013). An example of this would be in a pre/post comparison where
subjects are tested before and after undergoing some treatment (see Figure 7.1 for a visual-
ization). A standardized mean difference in a repeated-measures design can take on a few
different forms that we define below.

−30
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60

1 2
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X

Repeated Measures Design

Figure 7.1: Figure displaying simulated data of a repeated measures design, the x-axis shows
the condition (e.g., pre-test and post-test) and y-axis is the scores. Lines indicate
within person pre/post change.
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7.4.1 Difference Score 𝑑 (𝑑𝑧)

Instead of comparing the means of two sets of scores, a within subject design allows us to
subtract the scores obtained in condition 1 from the scores in condition 2. These difference
scores (𝑋diff = 𝑋2 −𝑋1) can be used similarly to the single group design (if the target value
was zero, i.e., 𝐶 = 0) such that (equation 2.3.5, Cohen 1988),

𝑑𝑧 = 𝑀diff

𝑆diff
(7.10)

Where the difference between this formulation and the single group design is the nature of
the scores (difference scores rather than raw scores). The convenient thing about 𝑑𝑧 is that
it has a straight-forward relationship with the 𝑡-statistic, 𝑑𝑧 = 𝑡√𝑛 . This makes it very useful
for power analyses. If the standard deviation of difference scores are not accessible, then it
can be calculated using the standard deviation of condition 1 (𝑆1), the standard deviation of
condition 2 (𝑆2), and the correlation between conditions (𝑟) (equation 2.3.6, Cohen 1988):

𝑆diff = √𝑆2
1 + 𝑆2

2 − 2𝑟𝑆1𝑆2 (7.11)

It is important to note that when the correlation between groups is large, then the 𝑑𝑧 value will
also be larger, whereas a small correlation will return a smaller 𝑑𝑧 value. The standard error
of 𝑑𝑧 can be calculated similarly to the single group design such that,

𝑆𝐸𝑑𝑧
= √ 1

𝑛 + 𝑑2𝑧
2𝑛 (7.12)

In R, we can use the d.ind.t.diff function from the MOTE package to calculate 𝑑𝑧.

# Cohen's dz for difference scores
# given difference score means and SDs

# For example:
# Difference Score Mean = 21.4, SD = 19.59, N = 96

library(MOTE)

stats <- d.dep.t.diff(
m = 21.4,
sd = 19.59,
n = 96,
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a = 0.05
)

# print just the d value and confidence intervals
data.frame(d = apa(stats$d),

dlow = apa(stats$dlow),
dhigh = apa(stats$dhigh))

d dlow dhigh
1 1.092 0.837 1.344

The output shows that the effect size is 𝑑𝑧 = 1.09, 95% CI [0.84, 1.34].

7.4.2 Repeated Measures 𝑑 (𝑑𝑟𝑚)

For a within-group design, we want to compare the means of scores obtained from condition
1 and condition 2. The repeated measures standardized mean difference between the two
conditions can be calculated by (equation 9, Lakens 2013),

𝑑𝑟𝑚 = 𝑀2 − 𝑀1
𝑆𝑤

. (7.13)

A positive 𝑑𝑟𝑚 value would indicate that the mean of condition 2 is larger than the mean of
condition 1. The standardizer here is the within-subject standard deviation, 𝑆𝑤. The within-
subject standard deviation can be defined as,

𝑆𝑤 = √𝑆2
1 + 𝑆2

2 − 2𝑟𝑆1𝑆2
2(1 − 𝑟) . (7.14)

We can also express 𝑆𝑤 in terms of the standard deviation of difference scores (𝑆diff),

𝑆𝑤 = 𝑆diff

√2(1 − 𝑟)
. (7.15)

Furthermore, we can even express 𝑑𝑟𝑚 in terms of the difference score standardized mean
difference (𝑑𝑧),
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𝑑𝑟𝑚 = 𝑑𝑧 × √2(1 − 𝑟). (7.16)

Ultimately the 𝑑𝑟𝑚 is more appropriate as an effect size estimate for use in meta-analysis
whereas 𝑑𝑧 is more appropriate for power analysis (Lakens 2013). The standard error for
𝑑𝑟𝑚 can be computed as,

𝑆𝐸𝑑𝑟𝑚
= √( 1

𝑛 + 𝑑2𝑟𝑚
2𝑛 ) × 2(1 − 𝑟) (7.17)

In R, we can use the d.ind.t.rm function from the MOTE package to calculate the repeated
measures standardized mean difference (𝑑𝑟𝑚).

# Cohen's d for repeated measures
# given means and SDs and correlation

# For example:
# Condition 1 Mean = 30.4, SD = 22.53, N = 96
# Condition 2 Mean = 21.4, SD = 19.59, N = 96
# correlation between conditions: r = .40

stats <- d.dep.t.rm(
m1 = 30.4,
m2 = 21.4,
sd1 = 22.53,
sd2 = 19.59,
r = .40,
n = 96,
a = 0.05

)

# print just the d value and confidence intervals
data.frame(d = apa(stats$d),

dlow = apa(stats$dlow),
dhigh = apa(stats$dhigh))

d dlow dhigh
1 0.425 0.215 0.633

The output shows that the effect size is 𝑑𝑟𝑚 = 0.42, 95% CI [0.21, 0.63].
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7.4.3 Average Variance 𝑑 (𝑑𝑎𝑣)

The problem with 𝑑𝑧 and 𝑑𝑟𝑚, is that they require the correlation between conditions. In
practice, correlations between conditions are frequently not reported. An alternative estimator
of Cohen’s 𝑑 in repeated measures design is to simply use the classic variation of cohen’s 𝑑
(i.e., pooled standard deviation). In a repeated measures design, the sample size does not
change between conditions. Therefore weighting the variance of condition 1 and condition 2
by their respective degrees of freedom (i.e., 𝑑𝑓 = 𝑛 − 1) is an unnecessary step. Instead,
we can standardize by the square root of the average the variances of condition 1 and 2 (see
equation 5, Algina and Keselman 2003):

𝑑𝑎𝑣 = 𝑀2 − 𝑀1

√𝑆2
1+𝑆2

2
2

(7.18)

This formulation is convenient especially when the correlation is not present, however without
the correlation it fails to take into account the consistency of change between conditions. The
standard error of the 𝑑𝑎𝑣 can be expressed as (equation 9, Algina and Keselman 2003),

𝑆𝐸𝑑𝑎𝑣
= √2(𝑆2

1 + 𝑆2
2 − 2𝑟𝑆1𝑆2)

𝑛(𝑆2
1 + 𝑆2) (7.19)

In R, we can use the d.ind.t.rm function from the MOTE package to calculate the repeated
measures standardized mean difference (𝑑𝑟𝑚).

# Cohen's d for repeated measures (average variance)
# given means and SDs

# For example:
# Condition 1 Mean = 30.4, SD = 22.53, N = 96
# Condition 2 Mean = 21.4, SD = 19.59, N = 96

stats <- d.dep.t.avg(
m1 = 30.4,
m2 = 21.4,
sd1 = 22.53,
sd2 = 19.59,
n = 96,
a = 0.05

)
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# print just the d value and confidence intervals
data.frame(d = apa(stats$d),

dlow = apa(stats$dlow),
dhigh = apa(stats$dhigh))

d dlow dhigh
1 0.427 0.217 0.635

The output shows that the effect size is 𝑑𝑎𝑣 = 0.43, 95% CI [0.22, 0.64].

7.4.4 Becker’s 𝑑 (𝑑𝑏)

An even simpler variant of repeated measures 𝑑 value comes from Becker (1988). Becker’s
𝑑 standardizes simply by the pre-test standard deviation when the comparison is a pre/post
design,

𝑑𝑏 = 𝑀post − 𝑀pre

𝑆pre
. (7.20)

The convenient interpretation of “change in baseline standard deviations” can be quite useful.
We can also obtain the standard error with (equation 13, Becker 1988),

𝑆𝐸𝑑𝑏
= √2(1 − 𝑟)

𝑛 + 𝑑2
𝑏

2𝑛 (7.21)

Notice that even though the formula for calculating 𝑑𝑏 did not include the correlation coefficient,
the standard error does.

In base R, we can calculate Becker’s formulation of standardized mean difference using the
equations above.

# Install the package below if not done so already
# install.packages(escalc)
# Cohen's d for repeated measures (becker's d)
# given means, the pre-test SDs, and the correlation

# For example:
# Pre-test Mean = 21.4, SD = 19.59, N = 96
# Post-test Mean = 30.4, N = 96
# Correlation between conditions: r = .40
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Mpre <- 21.4
Mpost <- 30.4
Spre <- 19.59
r <- .40
n <- 96
a <- 0.05

d <- (Mpost - Mpre) / Spre

SE <- sqrt( 2*(1-r)/n + d^2/(2*n) )

# print just the d value and confidence intervals
data.frame(d = apa(d),

dlow = apa(d - 1.96*SE),
dhigh = apa(d + 1.96*SE))

d dlow dhigh
1 0.459 0.231 0.688

The output shows that the effect size is 𝑑𝑟𝑚 = 0.46, 95% CI [0.23, 0.69].

7.4.5 Comparing Repeated Measures 𝑑 values

Figure 7.2 shows repeated measures designs with a high (𝑟 = .95) and low (𝑟 = .05) correla-
tion between conditions. Let us fix the standard deviations and means for both conditions (i.e.,
high and low correlation) and only vary the correlation. Now we can compare the repeated
measures estimators based on these two conditions shown in Figure 7.2:

• High correlation:

– 𝑑𝑧 = 1.24
– 𝑑𝑟𝑚 = 0.39
– 𝑑𝑎𝑣 = 0.43
– 𝑑𝑏 = 0.40

• Low correlation:

– 𝑑𝑧 = 0.31
– 𝑑𝑟𝑚 = 0.43
– 𝑑𝑎𝑣 = 0.43
– 𝑑𝑏 = 0.40
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We notice that the correlation greatly influences 𝑑𝑧 more than any other estimator. The 𝑑𝑟𝑚
value has very little change, whereas 𝑑𝑎𝑣 and 𝑑𝑏 do not take into account the correlation at
all.
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Figure 7.2: Figure displaying simulated data of a repeated measures design, the x-axis shows
the condition (e.g., pre-test and post-test) and y-axis is the scores. Left panel
shows a high pre/post correlation (𝑟 = .95) and right panel shows a low correlation
condition (𝑟 = .05). Lines indicate within person pre/post change.

7.5 Pretest-Posttest-Control Group Designs

In many areas of research both between and within group factors are incorporated. For exam-
ple, in research involving the examination of the effects of an intervention often a sample is
randomised into two seperate groups (intervention and control) and then they are measured
on the outcome of interest both before (pretest) and after (posttest) the intervention/control
period. In these types of 2x2 (group x time) study designs it is usually the difference between
the standardised mean change for the intervention/treatment (𝑇 ) and control (𝐶) groups that
is of interest. For a visualization of a pretest-posttest-control group design see Figure 7.3.
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Morris (2008) details three effect sizes for this pretest-posttest-control (PPC).

−25

0

25

50

75

S
co

re

Pre Post

Control Group

−25

0

25

50

75

S
co

re
Pre Post

Intervention Group

Figure 7.3: Illustration of a pre-post control design. Left panel shows the pre-post difference
in the control group and right panel shows the pre-post difference in the interven-
tion/treatment group. Lines indicate within person pre/post change.

7.5.1 PPC1 - separate pre-test standard deviations

The separate pre-test (i.e., baseline) standard deviations are used to standardize the pre/post
mean difference in the intervention group and the control group respectively (see equation 4,
Morris 2008),

𝑑𝑇 = 𝑀𝑇 ,post − 𝑀𝑇 ,pre
𝑆𝑇 ,pre

(7.22)

𝑑𝐶 = 𝑀𝐶,post − 𝑀𝐶,pre
𝑆𝐶,pre

(7.23)
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Note that these effect sizes are identical to the Becker’s 𝑑 formulation of the SMD (see Sec-
tion 7.4.4). Therefore the pretest-posttest-control group effect size is simply the difference
between the intervention and control pre/post SMD (equation 15, Becker 1988),

𝑑𝑃𝑃𝐶1 = 𝑑𝑇 − 𝑑𝐶 (7.24)

The asymptotic standard error of 𝑑𝑃𝑃𝐶2 was first derived by Becker (1988) and can be ex-
pressed as the square root of the sum of the sampling variances (equation 16, Becker 1988)

𝑆𝐸𝑑𝑃𝑃𝐶1
= √[2(1 − 𝑟𝑇 )

𝑛𝑇
+ 𝑑𝑇

2𝑛𝑇
] + [2(1 − 𝑟𝐶)

𝑛𝐶
+ 𝑑𝐶

2𝑛𝐶
] (7.25)

We can calculate 𝑑𝑃𝑃𝐶1 and it’s confidence intervals using base R:

# Example:

# Control Group (N = 90)
## Pre-test Mean = 20, SD = 6
## Post-test Mean = 25, SD = 7
## Pre/post correlation = .50
M_Cpre <- 20
M_Cpost <- 25
SD_Cpre <- 6
SD_Cpost <- 7
rC <- .50
nC <- 90

# Intervention Group (N = 90)
## Pre-test Mean = 20, SD = 5
## Post-test Mean = 27, SD = 8
## Pre/post correlation = .50
M_Tpre <- 20
M_Tpost <- 27
SD_Tpre <- 5
SD_Tpost <- 8
rT <- .50
nT <- 90

# calculate the observed standardized mean difference
dT <- (M_Tpost- M_Tpre) / SD_Tpre
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dC <- (M_Cpost - M_Cpre) / SD_Cpre
dPPC1 <- dT - dC

# calculate the standard error
SE <- sqrt( 2*(1-rT)/nT + dPPC1^2/(2*nT) + 2*(1-rC)/nC + dPPC1^2/(2*nC) )

# print the d value and confidence intervals
data.frame(d = MOTE::apa(dPPC1),

dlow = MOTE::apa(dPPC1 - 1.96*SE),
dhigh = MOTE::apa(dPPC1 + 1.96*SE))

d dlow dhigh
1 0.567 0.252 0.881

The output shows a pre-post intervention effect of 𝑑𝑃𝑃𝐶1 = 0.57 [0.25, 0.88].

7.5.2 PPC2 - pooled pre-test standard deviations

The pooled pre-test (i.e., baseline) standard deviations can be used to standardized the dif-
ference in pre/post change between intervention and control groups such that (equation 8,
Morris 2008),

𝑑𝑃𝑃𝐶2 = (𝑀𝑇 ,post − 𝑀𝑇 ,pre) − (𝑀𝐶,post − 𝑀𝐶,pre)
𝑆𝑝,pre

(7.26)

where

𝑆𝑝,pre = √(𝑛𝑇 − 1)𝑆2
𝑇 ,pre + (𝑛𝐶 − 1)𝑆2

𝐶,pre
𝑛𝑇 + 𝑛𝐶 − 2 . (7.27)

The distribution of 𝑑𝑃𝑃𝐶2 was described by Morris (2008) and can be expressed as (adapted
from equation 16, Morris 2008),

𝑆𝐸𝑑𝑃𝑃𝐶2
=

√√√
⎷

2 (1 − 𝑛𝑇 𝑟𝑇 + 𝑛𝐶𝑟𝐶
𝑛𝑇 + 𝑛𝐶

) (𝑛𝑇 + 𝑛𝐶
𝑛𝑇 𝑛𝐶

) [1 + 𝑑2
𝑃𝑃𝐶2

2 (1 − 𝑛𝑇 𝑟𝑇 +𝑛𝐶𝑟𝐶
𝑛𝑇 +𝑛𝐶

) (𝑛𝑇 +𝑛𝐶
𝑛𝑇 𝑛𝐶

)
] − 𝑑2

𝑃𝑃𝐶2

(7.28)
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Note the original equation shown in the paper by Morris (2008) uses the population pre/post
correlation 𝜌, however in the equation above we replace 𝜌 with the sample size weighted
average of the Pearson correlation computed in the treatment group and the control group
(i.e., 𝜌 ≈ 𝑛𝑇 𝑟𝑇 +𝑛𝐶𝑟𝐶

𝑛𝑇 +𝑛𝐶
).

We can use base R to obtain 𝑑𝑃𝑃𝐶2 and confidence intervals:

# Example:

# Control Group (N = 90)
## Pre-test Mean = 20, SD = 6
## Post-test Mean = 25, SD = 7
## Pre/post correlation = .50
M_Cpre <- 20
M_Cpost <- 25
SD_Cpre <- 6
SD_Cpost <- 7
rC <- .50
nC <- 90

# Intervention Group (N = 90)
## Pre-test Mean = 20, SD = 5
## Post-test Mean = 27, SD = 8
## Pre/post correlation = .50
M_Tpre <- 20
M_Tpost <- 27
SD_Tpre <- 5
SD_Tpost <- 8
rT <- .50
nT <- 90

# calculate the observed standardized mean difference
dPPC2 <- ((M_Tpost- M_Tpre) - (M_Cpost - M_Cpre)) / sqrt( ( (nT - 1)*(SD_Tpre^2) + (nC - 1)*(SD_Cpre^2) ) / (nT + nC - 2) )

# calculate the standard error
SE <- sqrt(2*(1-( (nT*rT+nC*rC)/(nT + nC))) * ((nT+nC)/(nT*nC)) * (1 + (dPPC2^2 / (2*(1 - ((nT*rT+nC*rC)/(nT+nC))) * ((nT+nC)/(nT*nC)))))) - dPPC2

# print the d value and confidence intervals
data.frame(d = MOTE::apa(dPPC2),

dlow = MOTE::apa(dPPC2 - 1.96*SE),
dhigh = MOTE::apa(dPPC2 + 1.96*SE))
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d dlow dhigh
1 0.362 0.304 0.420

The output shows a pre-post intervention effect of 𝑑𝑃𝑃𝐶2 = 0.36 [0.30, 0.42].

7.5.3 PPC3 - pooled pre- and post-test

The two previous effect sizes only use the pretest standard deviation. But if we are happy to as-
sume that pretest and posttest variances are homogenous1 the pooled pre-test and post-test
standard deviations can be used to standardized the difference in pre/post change between
intervention and control groups such that (equation 8, Morris 2008),

𝑑𝑃𝑃𝐶3 = (𝑀𝑇 ,post − 𝑀𝑇 ,pre) − (𝑀𝐶,post − 𝑀𝐶,pre)
𝑆𝑝,pre-post

, (7.29)

where,

𝑆𝑝,pre-post = √(𝑛𝑇 − 1) (𝑆2
𝑇 ,pre + 𝑆2

𝑇 ,post) + (𝑛𝐶 − 1) (𝑆2
𝐶,pre + 𝑆2

𝐶,post)
2(𝑛𝑇 + 𝑛𝐶 − 2) . (7.30)

The standard error for 𝑑𝑃𝑃𝐶2 is currently unknown. An option to estimate this standard
error is to use a non-parametric or parametric bootstrap by repeatedly sampling the raw data,
or if the raw data is not available resample simulated data. We can do this in base R by
simulating pre/post data using the mvrnorm() function from the MASS package (Venables and
Ripley 2002):

# Install the package below if not done so already
# install.packages(MASS)

# Example:

# Control Group (N = 90)
## Pre-test Mean = 20, SD = 6
## Post-test Mean = 25, SD = 7
## Pre/post correlation = .50
M_Cpre <- 20

1Note, this may not be the case especially where there is a mean-variance relationship and one (usually the
intervention) group has a higher posttest mean score.
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M_Cpost <- 25
SD_Cpre <- 6
SD_Cpost <- 7
rC <- .50
nC <- 90

# Intervention Group (N = 90)
## Pre-test Mean = 20, SD = 5
## Post-test Mean = 27, SD = 8
## Pre/post correlation = .50
M_Tpre <- 20
M_Tpost <- 27
SD_Tpre <- 5
SD_Tpost <- 8
rT <- .50
nT <- 90

# simulate data
set.seed(1) # set seed for reproducibility
boot_dPPC3 <- c()
for(i in 1:1000){
# simulate control group pre-post data
data_C <- MASS::mvrnorm(n = nC,

# input observed means
mu = c(M_Cpre,M_Cpost),
# input observed covariance matrix
Sigma = data.frame(pre = c(SD_Cpre^2, rC*SD_Cpre*SD_Cpost),

post = c(rC*SD_Cpre*SD_Cpost,SD_Cpost^2)))
# simulate intervention group pre-post data
data_T <- MASS::mvrnorm(n = nT,

# input observed means
mu = c(M_Tpre,M_Tpost),
# input observed covariance matrix
Sigma = data.frame(pre = c(SD_Tpre^2, rT*SD_Tpre*SD_Tpost),

post = c(rT*SD_Tpre*SD_Tpost,SD_Tpost^2)))

# calculate the mean difference in pre/post change (the numerator)
MeanDiff <- (mean(data_T[,2]) - mean(data_T[,1])) - (mean(data_C[,2]) - mean(data_C[,1]))

# calculate the pooled pre-post standard deviation (the denominator)
S_Pprepost <- sqrt( ( (nT - 1)*(sd(data_T[,1])^2+sd(data_T[,2])^2) + (nC - 1)*(sd(data_C[,1])^2+sd(data_C[,2])^2) ) / (nT + nC - 2) )
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# calculate the standardized mean difference for each bootstrap iteration
boot_dPPC3[i] <- MeanDiff / S_Pprepost

}

# calculate bootstrapped standard error
SE <- sd(boot_dPPC3)

# calculate the observed standardized mean difference
dPPC3 <- ((M_Tpost- M_Tpre) - (M_Cpost - M_Cpre)) / sqrt( ( (nT - 1)*(SD_Tpre^2+SD_Tpost^2) + (nC - 1)*(SD_Cpre^2+SD_Cpost^2) ) / (nT + nC - 2) )

#print the d value and confidence intervals
data.frame(d = MOTE::apa(dPPC3),

dlow = MOTE::apa(dPPC3 - 1.96*SE),
dhigh = MOTE::apa(dPPC3 + 1.96*SE))

d dlow dhigh
1 0.214 0.002 0.427

The output shows a pre-post intervention effect of 𝑑𝑃𝑃𝐶3 = 0.21 [0.002, 0.43].

7.6 Small Sample Bias in 𝑑 values

All the estimators of 𝑑 listed above are biased estimates of the population 𝑑 value, specifically
they all over-estimate the population value in small sample sizes. To adjust for this bias, we
can apply a correction factor based on the degrees of freedom. The degrees of freedom will
largely depend on the estimator used. The degrees of freedom for each estimator is listed
below:

• Single Group design (𝑑𝑠): 𝑑𝑓 = 𝑛 − 1
• Between Groups - Pooled Standard Deviation (𝑑𝑝): 𝑑𝑓 = 𝑛1 + 𝑛2 − 2
• Between Groups - Control Group Standard Deviation (𝑑Δ): 𝑑𝑓 = 𝑛𝐶 − 1
• Repeated Measures - all types (𝑑𝑧, 𝑑𝑟𝑚, 𝑑𝑎𝑣, 𝑑𝑏): 𝑑𝑓 = 𝑛 − 1
• Pretest-Posttest-Control Separate Standard Deviation (𝑑𝑃𝑃𝐶1): 𝑑𝑓 = 𝑛𝐶 − 1
• Pretest-Posttest-Control Pooled Pretest Standard Deviation (𝑑𝑃𝑃𝐶2): 𝑑𝑓 = 𝑛𝑇 +

𝑛𝐶 − 2
• Pretest-Posttest-Control Pooled Pretest and Posttest Standard Deviation (𝑑𝑃𝑃𝐶3):𝑑𝑓 = 2(𝑛𝑇 + 𝑛𝐶 − 2)

With the appropriate degrees of freedom, we can use the following correction factor, 𝐶𝐹 , to
obtain an unbiased estimate of the population standardized mean difference:
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𝐶𝐹 =
Γ (𝑑𝑓

2 )
Γ (𝑑𝑓−1

2 ) √𝑑𝑓
2

(7.31)

WhereΓ(⋅) is the gamma function. An approximation of this complex formula given by Hedges
(1981) can be written as 𝐶𝐹 ≈ 1 − 3

4⋅𝑑𝑓−1 . In R, this can be calculated using,

# Example:
# Group 1 sample size = 20
# Group 2 sample size = 18

n1 <- 20
n2 <- 18

df <- n1 + n2 - 2

CF <- gamma(df/2) / ( sqrt(df/2) * gamma((df-1)/2) )

CF

[1] 0.9789964

This correction factor can then be applied to any of the estimators mentioned above,

𝑑∗ = 𝑑 × 𝐶𝐹 (7.32)

The corrected 𝑑 value, 𝑑∗, is commonly referred to as Hedges’ 𝑔 or just 𝑔. To avoid notation
confusion we will just add an asterisk to 𝑑 to denote the correction. We also need to correct
the standard error for 𝑑∗

𝑆𝐸𝑑∗ = 𝑆𝐸𝑑 × 𝐶𝐹 (7.33)

These standard errors can then be used to calculate the confidence interval of the corrected
𝑑 value,

𝐶𝐼𝑑∗ = 𝑑∗ ± 1.96 × 𝑆𝐸𝑑∗ (7.34)
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# Example:
# Cohen's d = .50, SE = .10

d = .50
SE = .10

# correct d value and CIs small sample bias
d_corrected <- d * CF
SE_corrected <- SE * CF
dlow_corrected <- d_corrected - 1.96*SE_corrected
dhigh_corrected <- d_corrected + 1.96*SE_corrected

# print just the d value and confidence intervals
data.frame(d = apa(d),

dlow = apa(dlow_corrected),
dhigh = apa(dhigh_corrected))

d dlow dhigh
1 0.500 0.298 0.681

The output shows that the corrected effect size is 𝑑∗ = 0.50, 95% CI [0.30, 0.68].

7.7 Ratios of Means

Another common approach, particularly within the fields of ecology and evolution, is to take
the natural logarithm of the ratio between two means; the so-called Response Ratio (𝑙𝑛𝑅𝑅).
This is sometimes more favorable as, due to its construction using the standard deviation
in some form as a denominator, the various versions of standardized mean differences are
impacted by the estimate of this parameter for which studies are often less powered compared
to mean magnitudes (Yang et al. 2022). For the 𝑙𝑛𝑅𝑅 however the standard deviation only
impacts its variance estimation and not the point estimate. A limitation of the lnRR however
is that it is limited to data that are observed on a ratio scale (i.e., have an absolute zero and
instances of it are related ordinally and additively meaning both means will be positive).

Although strictly speaking the 𝑙𝑛𝑅𝑅 is not a difference in means in an additive sense as
the above standardized mean difference effect sizes are, it can in one sense be considered
to reflect the difference in means on the multiplicative scale. In fact, after calculation it is
often transformed to reflect the percentage difference or change between means: 100 ×
exp(𝑙𝑛𝑅𝑅) − 1. However, this can introduce transformation induced bias because a non-
linear transformation of a mean value is not generally equal to the mean of the transformed
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value. In the context of meta-analysis combining 𝑙𝑛𝑅𝑅 estimated across studies a correct
factor can be applied: 100 × exp(𝑙𝑛𝑅𝑅 + 0.5𝑆2

total) − 1, where 𝑆2
total is the variance of all𝑙𝑛𝑅𝑅 values.

Similarly to the various standardized mean differences, there are varied calculations for the
lnRR dependent upon the study design being used (see Senior, Viechtbauer, and Nakagawa
2020).

7.7.1 lnRR for Independent Groups (𝑙𝑛𝑅𝑅ind)

The lnRR can be calculated when groups are independent as follows,

𝑙𝑛𝑅𝑅ind = ln(𝑀𝑇
𝑀𝐶

) + 𝐶𝐹 (7.35)

Where 𝑀𝑇 and 𝑀𝐶 are the means for the treatment and control group respectively and 𝐶𝐹
is the small sample correction factor calculated as,

𝐶𝐹 = 𝑆2
𝑇

2𝑛𝑇 𝑀2
𝑇

− 𝑆2
𝐶

2𝑛𝐶𝑀2
𝐶

(7.36)

The standard error can be calculated as,

𝑆𝐸𝑙𝑛𝑅𝑅ind
= √ 𝑆2

𝑇
𝑛𝑇 𝑀2

𝑇
+ 𝑆2

𝐶
𝑛𝐶𝑀2

𝐶
+ 𝑆4

𝑇
2𝑛2

𝑇 𝑀4
𝑇

+ 𝑆4
𝐶

2𝑛2
𝐶𝑀4

𝐶
(7.37)

Using R we can easily calculate this effect size using the escalc() function in the metafor
package (Viechtbauer 2010):

# lnRR for two independent groups
# given means and SDs

# For example:
# Group 1 Mean = 30.4, Standard deviation = 22.53, Sample size = 96
# Group 2 Mean = 21.4, Standard deviation = 19.59, Sample size = 96

library(metafor)

# prepare the data
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M1 <- 30.4
M2 <- 21.4
SD1 <- 22.53
SD2 <- 19.59
N1 = 96
N2 = 96

# calculate lnRRind and standard error
lnRRind <- escalc(measure = "ROM",

m1i = M1,
m2i = M2,
sd1i = SD1,
sd2i = SD2,
n1i = N1,
n2i = N2)

lnRRind$SE <- sqrt(lnRRind$vi)

# calculate confidence interval
lnRRind$CIlow <- lnRRind$yi - 1.96*lnRRind$SE
lnRRind$CIhigh <- lnRRind$yi + 1.96*lnRRind$SE

# print the VR value and confidence intervals
data.frame(lnRRind = MOTE::apa(lnRRind$yi),

lnRRind_low = MOTE::apa(lnRRind$CIlow),
lnRRind_high = MOTE::apa(lnRRind$CIhigh))

lnRRind lnRRind_low lnRRind_high
1 0.351 0.115 0.587

The example shwos a natural log response ratio of 𝑙𝑛𝑅𝑅ind = 0.35 [0.12, 0.59].

7.7.2 lnRR for dependent groups (𝑙𝑛𝑅𝑅dep)

The lnRR can be calculated when groups are dependent (i.e., same subjects in both condi-
tions), for example a pre-post comparison, as follows,

𝑙𝑛𝑅𝑅dep = ln(𝑀2
𝑀1

) + 𝐶𝐹 (7.38)
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Where 𝐶𝐹 is the small sample correct factor calculated as,

𝐶𝐹 = 𝑆2
2

2𝑛𝑀2
2

− 𝑆2
1

2𝑛𝑀2
1

(7.39)

The standard error can then be calculated as,

𝑆𝐸𝑙𝑛𝑅𝑅dep
= √ 𝑆2

1
𝑛𝑀2

1
+ 𝑆2

2
𝑛𝑀2

2
+ 𝑆4

1
2𝑛2𝑀4

1
+ 𝑆4

2
2𝑛2𝑀4

2
+ 2𝑟𝑆1𝑆2

𝑛𝑀1𝑀2
+ 𝑟2𝑆2

1𝑆2
2(𝑀4

1 + 𝑀4
2 )

2𝑛2𝑀4
1 𝑀4

2
(7.40)

Using R we can easily calculate this effect size using the escalc() function from the metafor
package as follows:

# lnRR for two dependent groups
# given means and SDs

# For example:
# Mean 1 = 30.4, Standard deviation 1 = 22.53
# Mean 2 = 21.4, Standard deviation 2 = 19.59
# Sample size = 96
# Correlation = 0.4

library(metafor)

# prepare the data
M1 <- 30.4
M2 <- 21.4
SD1 <- 22.53
SD2 <- 19.59
N = 96
R = 0.4

# calculate lnRR and standard error
lnRRdep <- escalc(measure = "ROMC",

m1i = M1,
m2i = M2,
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sd1i = SD1,
sd2i = SD2,
ni = N,
ri = R)

# obtain standard error from sqrt of sampling variance
lnRRdep$SE <- sqrt(lnRRdep$vi)

# calculate confidence interval
lnRRdep$CIlow <- lnRRdep$yi - 1.96*lnRRdep$SE
lnRRdep$CIhigh <- lnRRdep$yi + 1.96*lnRRdep$SE

# print the VR value and confidence intervals
data.frame(lnRRdep = MOTE::apa(lnRRdep$yi),

lnRRdep_low = MOTE::apa(lnRRdep$CIlow),
lnRRdep_high = MOTE::apa(lnRRdep$CIhigh))

lnRRdep lnRRdep_low lnRRdep_high
1 0.351 0.167 0.535

The example shwos a natural log response ratio of 𝑙𝑛𝑅𝑅dep = 0.35 [0.17, 0.54].
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8 Correlation between Two Continuous
Variables

To quantify the relationship between two continuous variables, the most common method is
to use a Pearson correlation coefficient (denoted with the letter 𝑟). The pearson correlation
takes the covariance between a continuous independent (𝑋) and dependent (𝑌 ) variable and
standardizes it by the standard deviations of 𝑋 and 𝑌 ,

𝑟 = Cov(𝑋, 𝑌 )
𝑆𝑋𝑆𝑌

.

We can visualize what a correlation between two variables looks like with scatter plots. Fig-
ure 8.1 shows scatter plots with differing levels of correlation.

The standard error of the Pearson correlation coefficient is,

𝑆𝐸𝑟 = √(1 − 𝑟2)2

𝑛 − 1
Unlike Cohen’s 𝑑 and other effect size measures, The correlation coefficient is bounded by -1
and positive 1, with positive 1 being a perfectly positive correlation, -1 being a perfectly nega-
tive correlation, and zero indicating no correlation between the two variables. The bounding
has the consequence of making the confidence interval asymmetric around 𝑟 (e.g., if the cor-
relation is positive, the lower bound is farther away from 𝑟 than the upper bound is). It is
important to note that with a correlation of zero, the confidence interval is symmetric and ap-
proximately normal. Instead, to obtain the confidence intervals of 𝑟, we first need to apply a
Fisher’s Z transformation. A Fisher’s Z transformation is a hyperbolic arctangent transforma-
tion of a Pearson correlation coefficient and can be computed as,

𝑍𝑟 = arctanh(𝑟)

The Fisher Z transformation ensures 𝑍𝑟 has a symmetric and approximately normal sampling
distribution. This then allows us to calculate the confidence interval from the standard error of
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Figure 8.1: Simulated data from a bivariate normal distribution displaying 6 different correla-
tions, r = 0, .20, .40, .60, .80, and 1.00.
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𝑍𝑟 (𝑆𝐸𝑍𝑟
= 1√

𝑛−3 ). We can also back-transform the confidence into a Pearson correlation
scale,

𝐶𝐼𝑟 = tanh(𝑍𝑟 ± 1.96 × 𝑆𝐸𝑍𝑟
)

We can then back-transform the upper bound and lower bound into the upper and lower bound
of 𝑟 by taking the hyperbolic tangent (the inverse of the arctangent).

In R, the full process of obtaining confidence intervals can be done quite easily. Note if you
have raw data for 𝑋 and 𝑌 , then you can compute the correlation with base R, cor(X,Y).

# example: r = .50, n = 50
r <- .50
n <- 50

# compute Zr
Zr <- atanh(r)

# calculate standard error of Zr
SE_Zr <- 1/sqrt(n-3)

# compute confidence interval of Zr
Zlow <- Zr - 1.96 * SE_Zr
Zhigh <- Zr + 1.96 * SE_Zr

# backtransform CI of Z to CI of Pearson correlation
rlow <- tanh(Zlow)
rhigh <- tanh(Zhigh)

# print pearson correlation and confidence intervals
data.frame(r = MOTE::apa(r),

rlow = MOTE::apa(rlow),
rhigh = MOTE::apa(rhigh))

r rlow rhigh
1 0.500 0.257 0.683

The output shows that the correlation and its confidence intervals are 𝑟 = 0.50, 95% CI [0.26,
0.68].
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9 Effect Sizes for Categorical Variables

For dichotomous relationships that involve proportions, there are many variations of effect
sizes that one can use. Commonly used effect size measures for statistical procedures on
categorical data include: phi coefficient (𝜙), Cramer’s 𝑉 , Cohen’s ℎ, Cohen’s 𝜔, odds ratio
(𝑂𝑅), risk difference (𝑅𝐷), and relative risk (𝑅𝑅).

Here is a table for every effect size discussed in this chapter:

Type Description Section

𝜙 - phi coefficient Pearson correlation between two
binary variables (i.e., 2x2 contingency
tables).

Section 9.2.1

𝑉 - Cramer’s V Measures the association between
categorical variables. Similar to a 𝜙
coefficient, but meant for contingency
tables larger than 2x2.

Section 9.2.2

ℎ - Cohen’s h Pearson correlation between two
binary variables. Difficult to interpret.

Section 9.2.3

𝑤 - Cohen’s w Association between two categorical
variables and it is computed
identically to the 𝜙 coefficient. If
computed on a 2x2 contingency table,
it will have an identical value to 𝜙.

Section 9.2.4

- Ben-Shachar’s Fei A correction to Cohen’s 𝑤 for one
dimensional count tables.

Section 9.2.5

𝑂𝑅 - Odds Ratio Ratio of odds of an event occurring
between treatment and control groups

Section 9.2.6

𝑅𝐷 - Risk Difference Difference between proportions in
treatment and control groups.

Section 9.2.7

𝑅𝑅 - Relative Risk Ratio of proportions in the treatment
and control groups.

Section 9.2.8
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9.1 One Sample Proportion Test

If we have a single sample and we want to assess the difference between a proportion and
some proportion of interest. We can first calculate the test statistic by comparing the observed
proportion (𝑝) vs the proportion of interest (𝑝0):

𝑧 = 𝑝 − 𝑝0

√𝑝(1−𝑝)
𝑛

, (9.1)

where 𝑛 is the sample size. Note that this is only valid if the proportion of interest is chance
(𝑝0 = .50) because the sampling distribution with a proportion of .50 is normal. However if the
proportion of interest is not .50, then we should instead compute Cohen’s ℎ (see Section 9.2.3
for details), which transforms the scale so that the distributions are normal regardless of the
proportion. The test-statistic with Cohen’s ℎ,

𝑧 = ℎ√𝑛 (9.2)

Let’s try testing the proportion against chance (𝑝0 = .50) in R. We can then calculate the
p-value in base R by using the pnorm() function:

# Example:
p <- .7 # observed proportion
p0 <- .5 # proportion of interest
n <- 50 # sample size

z <- (p-p0) / sqrt(p*(1-p)/n)

pval <- 2*(1-pnorm(z)) # two tailed test

data.frame(z,pval)

z pval
1 3.086067 0.002028231

Results show a significant difference from chance with 𝑧 = 3.09 and p-val = .002
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9.2 Effect Sizes

9.2.1 Phi Coefficient (𝜙)

Phi coefficient (𝜙) is a measure of association between two binary variables (therefore, it
ONLY applies to 2 by 2 contingency tables, i.e., each variable has only two levels). It is a
special case of the Pearson correlation coefficient and an 𝑟 for two binary variables is equal
to phi. Note that unlike 𝑟 that ranges from -1 to 1, phi ranges from 0 to 1. Also, the sign of 𝑟
indicates the direction of association, whereas to get the direction of an association given a
2 by 2 contingency table, we need to look at the table itself; phi only provides a measure of
strength. The 2 by 2 contingency table is illustrated by Table 9.2.

Table 9.2: Contingency table between two binary variables

𝑋 = 0 𝑋 = 1
𝑌 = 0 𝑛00 𝑛10𝑌 = 1 𝑛01 𝑛11

The sample sizes within each cell provide us with the necessary information to estimate the
relationship between the two variables. A large phi coefficient would be expected to have
relatively large sample sizes in the diagonal cells (𝑛00 and 𝑛11) and relatively low sample
sizes in the off-diagonal cells (𝑛01 and 𝑛10). To calculate phi, it can be calculated from the
cells of the contingency table directly (adapted from equation 1, Guilford 1965),

𝜙 = 𝑛11𝑛00 − 𝑛10𝑛01
√(𝑛00 + 𝑛01)(𝑛10 + 𝑛11)(𝑛00 + 𝑛10)(𝑛01 + 𝑛11)

(9.3)

or more conveniently, from the 𝜒2-statistic (equation 7.2.5, Cohen 1988),

𝜙 = √𝜒2

𝑛 (9.4)

Where 𝑛 is the total sample size (i.e., the sum of all the cells). Using the effectsize package
in R, we can calculate the the phi coefficient using the phi function directly from the contin-
gency table:

# Example contingency table:
# 40 17
# 11 45
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library(effectsize)

contingency_table <- matrix(c(40, 11,
17, 45),ncol = 2)

phi_coefficient <- phi(contingency_table, alternative = "two.sided")

phi_coefficient

Phi (adj.) | 95% CI
-------------------------
0.50 | [0.31, 0.69]

In our example we obtained a phi coefficient of 𝜙 = .50 [0.31, 0.69].

9.2.2 Cramer’s 𝑉
Cramer’s V, sometimes also referred to as Cramer’s phi (𝜙), is a generalized effect size mea-
sure of the association between two nominal variables. It applies to contingency tables of any
size (2×2, 3×3, 3×4, 5×3, etc.). Cramer’s 𝑉 on a 2×2 contingency table is equivalent to
the phi coefficient. For an illustration of a higher order contingency table, Table 9.3 represents
a 3 × 4 contingency table of two variables.

Table 9.3: Contingency table between two categorical variables

𝑋 = 0 𝑋 = 1 𝑋 = 2 𝑋 = 3
𝑌 = 0 𝑛00 𝑛10 𝑛21 𝑛31𝑌 = 1 𝑛01 𝑛11 𝑛21 𝑛31𝑌 = 2 𝑛02 𝑛12 𝑛22 𝑛32

Similarly to the phi coefficient, the value of Cramer’s 𝑉 ranges from 0 to 1 and can interpreted
in a similar way to a phi coefficient. Again we can use the 𝜒2 statistic to compute the value,
however, since there can be more than 2 levels to each variable, we also need to take into
account the number of levels, 𝑘, of the variable with the least number of levels (e.g., a 3 × 4
contingency table, 𝑘 would be equal to 3). Cramer’s 𝑉 is defined as (equation 7.2.6, Cohen
1988),

𝑉 = √ 𝜒2

𝑛(𝑘 − 1) (9.5)
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The standard error of a Cramer’s 𝑉 is similar to that of a Pearson correlation and a 𝜙 coeffi-
cient.

𝑆𝐸𝑉 = √(1 − 𝑉 2)2

𝑛 − 1 (9.6)

Where𝑛 is the total sample size (i.e., the sum of all cells). Like the pearson correlation, we can
not calculate the confidence interval directly from the standard error, instead, we must convert
𝑉 to a Fisher’s Z statistic, 𝑍𝑉 = arctanh(𝑉 ). We can then calculate the 95% confidence
interval for 𝑉 by back-transforming the confidence interval for 𝑍𝑉 :

𝑆𝐸𝑍𝑉
= 1√

𝑛 − 3 (9.7)

𝐶𝐼𝑉 = tanh(𝑍𝑉 ± 1.96 × 𝑆𝐸𝑍𝑉
) (9.8)

Using the ufs package (Peters and Gruijters 2023), we can calculate Cramer’s 𝑉 and it’s 95%
confidence interval using the Fisher’s Z method described above. For the example, we can
example data from a 3 × 3 contingency table.

# Example contingency table:
# 40 14 12
# 11 27 9
# 5 10 34

library(ufs)

contingency_table <- matrix(c(40, 11, 5,
14, 27, 10,
12, 9, 34),ncol = 3)

V <- cramersV(contingency_table)
CI <- confIntV(contingency_table)

# print pearson correlation and confidence intervals
data.frame(V = MOTE::apa(V$output$cramersV),

Vlow = MOTE::apa(CI$output$confIntV.fisher[1]),
Vhigh = MOTE::apa(CI$output$confIntV.fisher[2]))
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V Vlow Vhigh
1 0.442 0.309 0.558

In our example we obtained a Cramer’s 𝑉 of 𝑉 = .44 [.31, .56].

9.2.3 Cohen’s ℎ
Cohen’s ℎ is a measure of distance between two proportions or probabilities. It is sometimes
also referred to as the “difference between arcsines”. For a given proportion 𝑝, its arcsine
transformation is given by (equation 6.2.1, Cohen 1988):

𝜓 = 2 ⋅ arcsin(√𝑝). (9.9)

Cohen’s ℎ is the difference between the arcsine transformations of two proportions (equation
6.2.2, Cohen 1988):

ℎ = 𝜓1 − 𝜓2 (9.10)

Cohen’sℎ is commonly used for the power analysis of proportion tests. In fact, it is the required
effect size measure in the programG Power (Faul et al. 2009). We can calculate the standard
error of Cohen’s ℎ,

𝑆𝐸ℎ = √ 1
𝑛1

+ 1
𝑛2

(9.11)

Since the sampling distribution of ℎ is symmetric, we can calculate the confidence intervals
from the standard error,

𝐶𝐼ℎ = ℎ ± 1.96 × 𝑆𝐸ℎ (9.12)

To calculate Cohen’s ℎ, we can use the cohens_h function in the effectsize package in R.

# install package if not done so already
# install.packages('effectsize')
# Example proportions: p1 = .45, p2 = .30

library(effectsize)

contingency_table <- matrix(c(40, 11,
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14, 27),ncol = 2)

cohens_h(contingency_table)

Cohen's h | 95% CI
------------------------
0.93 | [0.52, 1.34]

From the example, the R code outputted a Cohen’s ℎ value of ℎ = .93 [0.52, 1.34].

9.2.4 Cohen’s 𝑤
Cohen’s 𝑤 is a measurem of association analogous to the phi coefficient but on tables that
are larger than 2x2. Although Cohen’s 𝑤 is useful for power analyses, it is not so useful as a
stand-alone effect size. As Cohen (1988) states (pp. 221):

As a measure of association, [Cohen’s 𝑤] lacks familiarity and convenience

Cohen’s𝑤 has the exact same formula as the phi coefficient with the only difference being that
the 𝜒2 statistic comes from a contingency table of any size (equation 7.2.5, Cohen 1988),

𝑤 = √𝜒2

𝑛 (9.13)

And can also be calculated directly from Cramer’s 𝑉 (equation 7.2.7, Cohen 1988),

𝑤 = 𝑉 ×
√

𝑘 − 1 (9.14)

Where 𝑘 is the number of categories in the variable with the least number of categories. We
can use the cohens_w() function in the effectsize package (Ben-Shachar, Lüdecke, and
Makowski 2020).

# Example contingency table
# 40 14
# 11 27

contingency_table <- matrix(c(40, 11,
14, 27),ncol = 2)

cohens_w(contingency_table,
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alternative = "two.sided")

Cohen's w | 95% CI
------------------------
0.45 | [0.24, 0.65]

From the example code, the cohens_w function returned Cohen’s 𝑤 value of 𝑤 = .45 [0.24,
0.65].

9.2.5 Ben-Shachar’s Fei (�)

Ben-Shachar et al. (2023) introduced a new effect size for one-dimensional tables of
counts/proportions that they label with the Hebrew letter, פ. Ben-Shachar’s פ is a correction
to Cohen’s𝑤 that adjusts for the expected value and consequently bounds the value between
0 and 1. The equation for פ is defined as,

פ = √
𝜒2

𝑛 ( 1
min(𝑃𝐸) − 1)

(9.15)

Where min(𝑃𝐸) is the smallest expected probability. The formula for Ben-Schachar’s פ can
be also be expressed in terms of Cohen’s 𝜔,

פ = 𝜔
√( 1

max(𝑃𝐸) − 1)
(9.16)

In R, we can calculate Ben-Shachar’s פ using the fei() function in the effectsize package
(Ben-Shachar, Lüdecke, and Makowski 2020).

# Example:
# Observed counts: 20, 50, 100 (observed proportions: .12, .29, .59)
# Expected proportions: .5, .2, .3

observed_counts <- c(20,50,100)
expected_probabilities <- c(.5,.2,.3)

fei(observed_counts,
p = expected_probabilities,
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alternative = "two.sided")

Fei | 95% CI
-------------------
0.39 | [0.31, 0.47]

- Adjusted for uniform expected probabilities.

From the example code, the fei function returned Ben-Shachar’s פ value of .39 [0.31, 0.47].

9.2.6 Odds Ratio (𝑂𝑅)

Odds ratio measures the effect size between two binary variables. It is commonly used in
medical and behavioral intervention research, and notably, in meta-analysis.

Let’s imagine a study conducted to investigate the association between smoking and the devel-
opment of major depressive disorder (MDD). The study includes a sample of 251 individuals,
categorizing them into two groups: 125 smokers and 126 non-smokers. The researchers
are interested in understanding the odds of having major depressive disorder (MDD) among
smokers compared to non-smokers. Say we find that 25 smokers were diagnosed with MDD
while 100 were not, but in the non-smoker group, 12 individuals were diagnosed with MDD
while 120 were not. The odds ratio would then be:

𝑂𝑅 = 25/100
12/120 = .25

.10 = 2.50 (9.17)

In general, we can can compute the odds-ratio from a contingency table between binary vari-
ables 𝑋 (i.e., the treatment) and 𝑌 (i.e., the outcome; see Table 9.4).

Table 9.4: Contingency table between two binary variables

𝑋 = 𝑇 𝑋 = 𝐶
𝑌 = 0 𝑛𝑇 0 𝑛𝐶0𝑌 = 1 𝑛𝑇 1 𝑛𝐶1

Ultimately, we want to compare the outcome between the treatment group (𝑋 = 𝑇 ) and the
control group (𝑋 = 𝐶). Therefore we can compute the odds ratio as,
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𝑂𝑅 = 𝑛𝑇 1/𝑛𝑇 0
𝑛𝐶1/𝑛𝐶0

(9.18)

The standard distribution of the odds-ratio is asymmetric. To calculate confidence intervals,
we can first convert the odds ratio to a log odds ratio (𝐿𝑂𝑅 = log(𝑂𝑅)). Then we can
calculate the standard error of the log odds ratio,

𝑆𝐸𝐿𝑂𝑅 = √ 1
𝑛𝑇 0

+ 1
𝑛𝑇 1

+ 1
𝑛𝐶0

+ 1
𝑛𝐶1

(9.19)

With the standard error of the log odds ratio we can then calculate the confidence interval of
the odds ratio by back-transforming using the exponential function,

𝐶𝐼𝑂𝑅 = exp(𝐿𝑂𝑅 ± 1.96 × 𝑆𝐸𝐿𝑂𝑅) (9.20)

In R, we can use the effectsize package to calculate the odds ratio and it’s confidence
interval:

# Example:
# Treatment Group: 10 diseased, 43 healthy
# Control Group: 24 diseased, 41 healthy

contingency_table <- matrix(c(10, 24,
43, 41),ncol = 2)

oddsratio(contingency_table,
alternative = "two.sided")

Odds ratio | 95% CI
-------------------------
0.40 | [0.17, 0.93]

The code output for this example shows an odds ratio of 𝑂𝑅 = 0.40 [0.17, 0.93]
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9.2.7 Risk Difference (𝑅𝐷)

Risk difference can be used to interpret the difference between two proportions. If we use the
contingency table from Table 9.4, and calculate a risk difference between the treatment group
and the control group. We can first calculate the proportion of cases where the outcome is
𝑌 = 1 within the control group and the treatment group:

𝑝𝐶 = 𝑛𝐶1
𝑛𝐶0 + 𝑛𝐶1

(9.21)

𝑝𝑇 = 𝑛𝑇 1
𝑛𝑇 0 + 𝑛𝑇 1

(9.22)

Then using these proportions we can calculate the risk difference (𝑅𝐷),

𝑅𝐷 = 𝑝𝑇 − 𝑝𝐶. (9.23)

The corresponding standard error is,

𝑆𝐸𝑅𝐷 = √𝑝𝐶(1 − 𝑝𝐶)
𝑛𝐶

+ 𝑝𝑇 (1 − 𝑝𝑇 )
𝑛𝑇

(9.24)

Where 𝑛𝐶 and 𝑛𝑇 are the total sample sizes within the control and treatment group, respec-
tively. The standard error can then be used to compute the 95% confidence intervals,

𝐶𝐼𝑅𝐷 = 𝑅𝐷 ± 1.96 × 𝑆𝐸𝑅𝐷 (9.25)

The risk difference formula is fairly simple, so we can compute it using base R.

# Example:
# Treatment group: proportion of cases = .5, sample size = 40
# Control group: proportion of cases = .3, sample size = 45

pT <- .50
pC <- .30
nT <- 40
nC <- 45

RD <- pT - pC
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SE <- sqrt( pC*(1-pC)/nC + pT*(1-pT)/nT )

# compute 95% CIs
RDlow <- RD - 1.96*SE
RDhigh <- RD + 1.96*SE

data.frame(
RD = MOTE::apa(RD),
RDlow = MOTE::apa(RDlow),
RDhigh = MOTE::apa(RDhigh)
)

RD RDlow RDhigh
1 0.200 -0.005 0.405

9.2.8 Relative Risk (𝑅𝑅)

The relative risk, often referred to as the “risk ratio,” calculates the ratio between the proportion
of cases in the treatment group and the proportion of cases in the control group. It provides
a straightforward interpretation: “individuals receiving the treatment have a 𝑅𝑅 times higher
odds of experiencing the outcome compared to controls.” To calculate relative riskm, first we
need to calculate the proportion of outcome cases in the treatment and control group

𝑝𝐶 = 𝑛𝐶1
𝑛𝐶0 + 𝑛𝐶1

𝑝𝑇 = 𝑛𝑇 1
𝑛𝑇 0 + 𝑛𝑇 1

Then we can calculate the relative risk,

𝑅𝑅 = 𝑝𝑇
𝑝𝐶

(9.26)

The corresponding standard error can be computed as,

𝑆𝐸𝑅𝑅 = √𝑝𝑇
𝑛𝑇

+ 𝑝𝐶
𝑛𝐶

(9.27)

The confidence intervals can be computed from the standard error,
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𝐶𝐼𝑅𝑅 = 𝑅𝑅 ± 1.96 × 𝑆𝐸𝑅𝑅 (9.28)

To compute relative risk, we can simply use the equations above in base R.

# Example:
# Treatment Group: 10 diseased, 43 healthy, 53 total
# Control Group: 24 diseased, 41 healthy, 65 total

pT <- 10/(43+10)
pC <- 24/(41+24)
nT <- 53
nC <- 65

RR <- pT / pC

SE <- sqrt(pT/nT + pC/nC)

RRlow <- RR - 1.96*SE
RRhigh <- RR + 1.96*SE

# print pearson correlation and confidence intervals
data.frame(RR = MOTE::apa(RR),

RRlow = MOTE::apa(RRlow),
RRhigh = MOTE::apa(RRhigh))

RR RRlow RRhigh
1 0.511 0.323 0.699
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10 Effect Sizes for ANOVAs

10.1 ANOVAs

For ANOVAs/F-tests, you will always need to report two kinds of effects: the omnibus effect
of the factor(s) and the effect of planned contrasts or post hoc comparisons.

For instance, imagine that you are comparing three groups/conditions with a one-way ANOVA.
The ANOVA will first return an F-statistic, the degrees of freedom, and the associated p-value.
Here, you need to calculate the size of this omnibus factor effect in eta-squared, partial eta-
squared, or generalized eta-squared.

Suppose the omnibus effect is significant. You now know that there is at least one group
that differs from the others. You want to know which group(s) differ from the others, and how
much they differ. Therefore, you conduct post hoc comparisons on these groups. Because
post hoc comparisons compare each group with the others in pairs, you will get a t-statistic
and p-value for each comparison. For this, you can calculate and report a standardized mean
difference.

Imagine that you have two independent variables or factors, and you conduct a two-by-two
factorial ANOVA. The first thing to do then is look at the interaction. If the interaction is signifi-
cant, you again report the associated omnibus effect size measures, and proceed to analyze
the simple effects. Depending on your research question, you compare the levels of one IV
on each level of the other IV. You will report d or g for these simple effects. If the interac-
tion is not significant, you look at the main effects and report the associated omnibus effect.
You then proceed to analyze the main effect by comparing the levels of one IV while collaps-
ing/aggregating the levels of the other IV. You will report d or g for these pairwise comparisons.
Note that lower-order effects are not directly interpretable if higher-order effects are significant.
If you have a significant interaction in a two-way ANOVA, you cannot interpret the main effects
directly. If you have a significant three-way interaction in a three-way ANOVA, you cannot in-
terpret the main effects or the two-way interactions directly, regardless of whether they are
significant or not.
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10.2 ANOVA tables

An ANOVA table generally consists of the grouping factors (+ residuals), the sum of squares,
the degrees of freedom, the mean square, the F-statistic, and the p-value. Using base R,
we can construct an ANOVA table using the aov() function to generate the ANOVA model
and then using summary.aov() to extract the table. For an example case, we will use the
palmerpenguins data set package and we will investigate the differences in the body mass
(the outcome) of three penguin species (the predictor/grouping variable):

library(palmerpenguins)

# construct anova model
# formula structure: outcome ~ grouping variable
ANOVA_mdl <- aov(body_mass_g ~ species,

data = penguins) # dataset

ANOVA_table <- summary.aov(ANOVA_mdl)
ANOVA_table

Df Sum Sq Mean Sq F value Pr(>F)
species 2 146864214 73432107 343.6 <2e-16 ***
Residuals 339 72443483 213698
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
2 observations deleted due to missingness

By default, summary.aov() does not report the 𝜂2 value, however we will discuss this more
in Section 10.7.1. The results show that the mean body mass between the three penguin
species (Adelie, Gentoo, Chinstrap) differ significantly from one another.

70



3500

4500

5500

Ade
lie

Chin
str

ap

Gen
to

o

Species

B
od

y 
M

as
s 

(g
)

10.3 One-way between-subjects ANOVA

One-way between-subject ANOVA is an extension of independent-samples t-tests. The null
hypothesis is that all k means of k independent groups are identical, whereas the alternative
hypothesis is that there are at least two means from these k groups differ. The assumptions
include: (1) independence of observations, (2) normality of residuals, and (3) equality (or
homogeneity) of variances (homoscedasticity).1

Note. Sometimes you may encounter a between-subject one-way ANOVA which compares
only two conditions, particularly when the paper is old. This is essentially a t-test, and the
F-statistic is just t-squared. It is preferable to report Cohen’s d for these tests. If you are
calculating the effect size for such tests, it’s best to calculate Cohen’s d, or convert the provided
eta-squared to Cohen’s d, as Cohen’s d can show the direction of the effect. Subsequent
analyses (e.g., power analysis) can also be based on Cohen’s d.

It’s very easy to determine eta-squared with an F-statistic and the two degrees of freedom
from a one-way ANOVA 2. Note that in the case of a one-way between-subject ANOVA,
eta-squared is equal to partial eta-squared.

1There are variants of ANOVAs that can have each of these assumptions violated.
2See this forum discussion for explanation.
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10.3.1 Determining degrees of freedom

Please refer to the following table to determine the degrees of freedom for ANOVA effects, if
they are not reported or if you are doubtful that they have been misreported.

Degrees of freedom

Between subjects ANOVA
Effect 𝑘 − 1
Error 𝑛 − 𝑘
Total 𝑛 − 1

10.3.2 Calculating eta-squared from F-statistic and degrees of freedom

Using the formula below, we can calculate 𝜂2 of an ANOVA model using the F-statistic and
the degrees of freedom,

𝜂2 = 𝑑𝑓effect × 𝐹
𝑑𝑓effect × 𝐹 + 𝑑𝑓error

.

In R, we can use the F_to_eta2() function from the effectsize package (Ben-Shachar,
Lüdecke, and Makowski 2020):

library(effectsize)

n = 154 # number of subjects
k = 3 # number of groups
f = 84.3 # F-statistic

df_effect = k - 1
df_error = n - k

F_to_eta2(f = f,
df = df_effect,
df_error = df_error,
alternative = 'two.sided') # obtain two sided CIs

Eta2 (partial) | 95% CI
-----------------------------
0.53 | [0.42, 0.61]
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10.3.3 Calculating eta-squared from an ANOVA table

Let’s use the table from the ANOVA model in Section 10.2:

Table 10.2: One-way ANOVA table

Df Sum Sq Mean Sq F value Pr(>F)

species 2 146864214 73432107.1 343.6263 0
Residuals 339 72443483 213697.6 NA NA

From this table we can use the sum of squares from the grouping variable (species) and the
total sum of squares (𝑆𝑆total = 𝑆𝑆effect+𝑆𝑆error) to calculate the 𝜂2 value using the following
equation:

𝜂2 = 𝑆𝑆effect

𝑆𝑆total
= 𝑆𝑆effect

𝑆𝑆effect + 𝑆𝑆error

In R, we can use the eta.full.SS() function in the MOTE package (Buchanan et al. 2019) to
obtain 𝜂2 from an ANOVA table.

library(MOTE)

eta <- eta.full.SS(dfm = 2, # effect degrees of freedom
dfe = 339, # error degrees of freedom
ssm = 146864214, # sum of squares for the effect
sst = 146864214 + 72443483, # total sum of squares
Fvalue = 343.6263,
a = .05)

data.frame(eta_squared = apa(eta$eta),
etalow = apa(eta$etalow),
etahigh = apa(eta$etahigh))

eta_squared etalow etahigh
1 0.670 0.606 0.722

The example code outputs 𝜂2 = .67 [.61, .72]. This suggests that species accounts for 67%
of the total variation in body mass between penguins.
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10.3.4 Calculating Cohen’s d for post-hoc comparisons

In an omnibus ANOVA, the p-value is telling us whether the means from all groups come from
the same population mean, however this does not inform us about which groups differ and
by how much. Using the same example as before, let’s say we want to answer a specific
question such as: what is the difference in body mass between Adelie penguins and Gentoo
penguins? To answer this question, we can calculate the raw mean difference between the
two groups. In R, we can do that with the following code:

Madelie <- mean(penguins$body_mass_g[penguins$species=='Adelie'], na.rm=T)
Mgentoo <- mean(penguins$body_mass_g[penguins$species=='Gentoo'], na.rm=T)

Mgentoo - Madelie

[1] 1375.354

Based on the mean difference, Gentoo penguins are on average 1375 grams heavier than
Adelia penguins in total body mass. We can also calculate a standardized mean difference
using the escalc() function in the metafor package (Viechtbauer 2010).

library(metafor)

# Means, SDs, and sample sizes for each group
Madelie <- mean(penguins$body_mass_g[penguins$species=='Adelie'], na.rm=T)
Mgentoo <- mean(penguins$body_mass_g[penguins$species=='Gentoo'], na.rm=T)
SDadelie <- sd(penguins$body_mass_g[penguins$species=='Adelie'], na.rm=T)
SDgentoo <- sd(penguins$body_mass_g[penguins$species=='Gentoo'], na.rm=T)
Nadelie <- sum(penguins$species=='Adelie', na.rm=T)
Ngentoo <- sum(penguins$species=='Gentoo', na.rm=T)

summary(
escalc(measure = 'SMD',

m1i = Mgentoo,
m2i = Madelie,
sd1i = SDgentoo,
sd2i = SDadelie,
n1i = Ngentoo,
n2i = Nadelie)

)
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yi vi sei zi pval ci.lb ci.ub
1 2.8602 0.0295 0.1716 16.6629 <.0001 2.5237 3.1966

The standardized mean difference between Adelie and Gentoo penguins is 𝑑 = 2.86 [2.52,
3.19], demonstrating that Gentoo penguins have body mass 2.86 standard deviations larger
than Adelie penguins.

We can also quantify contrasts from summary statistics reported from the ANOVA table and
the within group means. We can calculate the standardized mean difference using the means
from both groups and the mean squared error (𝑀𝑆𝐸) the following equation:

𝑑 = 𝑀1 − 𝑀2√
𝑀𝑆𝐸

This method gives a standardized mean difference equivalent to the Cohen’s 𝑑 with the pooled
standard deviation in the denominator (see chapter on mean differences). Therefore if we ob-
tain the mean squared errors (i.e., MS of residuals) from Section 10.3.3 and we obtain the
means (means: Gentoo = 5076, Adelie = 3701), we can calculate the standardized mean
difference as: 5076−3701√

213697.6 = 1375
462.27 = 2.974. The discrepency between the standardized

mean difference provided by the escalc() function is due to the fact that the function auto-
matically applies a small sample correction factor thus reducing the overall effect.

Df Sum Sq Mean Sq F value Pr(>F)

species 2 146864214 73432107.1 343.6263 0
Residuals 339 72443483 213697.6 NA NA

Beware the assumptions.

Note that this method is ONLY valid when you are willing to assume equal variances
among groups (homoscedasticity), and when you conduct a Fisher’s one-way ANOVA
(rather thanWelch’s). This method is also impractical if you are calculating from reported
statistics, and MSE is not reported (which is typically the case).
If you are unwilling to assume homogeneity of variances, then calculate Cohen’s d be-
tween groups as if there are only two groups for comparison. However, you should know
that it also makes little sense to conduct a Fisher’s ANOVA in such situations. You may
want to switch to Welch’s ANOVA, which does not assume homoscedasticity. If vari-
ances differ greatly, you may want to use alternative standardized effect size measures,
such as Glass’ delta, and calculate confidence intervals using bootstrap.
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10.4 One-way repeated measures ANOVA

One-way repeated measures ANOVA (rmANOVA) is an extension of paired-samples t-tests,
with the difference being it can be used in two or more groups.

10.4.1 Determining degrees of freedom

Please refer to the following table to determine the degrees of freedom for repeated measure
ANOVA effects.

Degrees of freedom

Within-subject ANOVA (repeated measures)
Effect 𝑘 − 1
Error-between (𝑛 − 1) × (𝑘 − 1)
Error-within (𝑛 − 1) ⋅ (𝑘 − 1)
Total (within) 𝑛 ⋅ (𝑘 − 1)

10.4.2 Eta-squared from rmANOVA statistics

Commonly, we use eta-squared (𝜂2) or partial eta-squared (𝜂2
𝑝) as the effect size measure

for one-way rmANOVAs, for which these two are in fact equal. Let’s construct an rmANOVA
model use example data from the datarium package (Kassambara 2019). The selfesteem
data set simply shows self-esteem scores over three repeated measurements within the same
subjects.

### load in and re-format data
library(tidyr)
data("selfesteem", package = "datarium")
selfesteem <- tidyr::pivot_longer(selfesteem,cols = c("t1","t2","t3"))
colnames(selfesteem) <- c("subject","time","self_esteem")
####

rmANOVA_mdl = aov(formula = self_esteem ~ time + Error(subject),
data = selfesteem)

summary(rmANOVA_mdl)

Error: subject
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Df Sum Sq Mean Sq F value Pr(>F)
Residuals 1 0.07667 0.07667

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

time 2 102.46 51.23 63.07 1.06e-10 ***
Residuals 26 21.12 0.81
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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There are two tables displayed here, the table on top displays the between subject effects and
the table below shows the within subject effects.The equations and functions to calculate 𝜂2
mentioned in the one-way between-subjects ANOVAs section also apply here:

𝜂2 = 𝑑𝑓effect × 𝐹
𝑑𝑓effect × 𝐹 + 𝑑𝑓error-within

,

𝜂2 = 𝑆𝑆effect

𝑆𝑆total

Note that here 𝑆𝑆total does not include 𝑆𝑆error-between because we are not interested in it by
conducting a rmANOVA. This analysis targets an effect that we think should happen on each
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subject, regardless of how these subjects will vary from each other. In other words, between-
subjects variance can be large or small, but we do not care about it when we examine whether
there is an effect or not across repeated measures. Therefore the total sum of squares can
be defined as

𝑆𝑆total = 𝑆𝑆effect + 𝑆𝑆error-within

Therefore we can calculate 𝜂2 from the rmANOVA table as,

𝜂2 = 102.46
21.12 + 102.46 = .83

We can plug the rmANOVAmodel into the eta_squared() function from the effectsize pack-
age in R (Ben-Shachar, Lüdecke, and Makowski 2020) to calculate 𝜂2.

library(effectsize)

eta_squared(rmANOVA_mdl,
alternative = "two.sided")

# Effect Size for ANOVA (Type I)

Group | Parameter | Eta2 (partial) | 95% CI
--------------------------------------------------
Within | time | 0.83 | [0.69, 0.89]

As expected, we find the same point-estimate from our hand calculation. To calculate 𝜂2 from
the F-statistic and degrees of freedom we can use the MOTE package (Buchanan et al. 2019)
as we did in Section 10.3.3

library(MOTE)

eta <- eta.full.SS(dfm = 2, # effect degrees of freedom
dfe = 26, # error degrees of freedom
ssm = 102.46, # sum of squares for the effect
sst = 102.46 + 21.12, # total sum of squares
Fvalue = 63.07,
a = .05)

data.frame(eta_squared = apa(eta$eta),
etalow = apa(eta$etalow),
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etahigh = apa(eta$etahigh))

eta_squared etalow etahigh
1 0.829 0.644 0.910

Note the discrepency between confidence intervals returned by MOTE and effectsize this is
due to differences in the calculation.

10.5 Two-Way between-subjects ANOVA

Two-way between-subjects ANOVA is used when there are two predictor grouping variables
in the model. Note again that between subjects means that each group contain different
subjects.

10.5.1 Determining degrees of freedom

Please refer to the following table to determine the degrees of freedom for two-way ANOVA
effects (Morse 2018). Note that 𝑘1 is the number of groups in the first variable, and 𝑘2 is the
number of groups in the second variable.

Degrees of freedom

Within subjects ANOVA
Main Effect (of one variable) 𝑘1 − 1 or 𝑘2 − 1
Interaction Effect (𝑘1 − 1) × (𝑘2 − 1)
Error 𝑛 − 𝑘1 ⋅ 𝑘2
Total 𝑛 − 1

10.5.2 Eta-squared from Two-Way ANOVA statistics

For Two-way ANOVAs we can obtain 𝜂2
𝑝 for each predictor in the model. Let’s construct our

ANOVA model using data from the palmerpenguins dataset (Horst, Hill, and Gorman 2020).
In this example we want to see how the species and the sex of the penguin explains variance
in body mass.

library(palmerpenguins)
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ANOVA2_mdl <- aov(body_mass_g ~ species + sex + species:sex,
data = penguins)

summary(ANOVA2_mdl)

Df Sum Sq Mean Sq F value Pr(>F)
species 2 145190219 72595110 758.358 < 2e-16 ***
sex 1 37090262 37090262 387.460 < 2e-16 ***
species:sex 2 1676557 838278 8.757 0.000197 ***
Residuals 327 31302628 95727
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
11 observations deleted due to missingness
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The results show that species, sex, and the interaction between the two account for substantial
variance in body mass. We can obtain the contributions of species, sex, and their interaction
by computing the partial eta-squared value (𝜂2

𝑝). To do this using similar formulas to 𝜂2 from
the one-way ANOVAs. The difference between the formulas for 𝜂2

𝑝 anf 𝜂2 is that 𝜂2
𝑝 does not

use the total sum of squares in the denominator, instead it uses the residual sum of squares
(𝑆𝑆error) and the sum of squares from the effect of interest (𝑆𝑆effect; i.e., species or sex but
not both). For example,
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For species: 𝜂2
𝑝 = 𝑆𝑆effect

𝑆𝑆effect + 𝑆𝑆error
= 145190219

145190219 + 31302628 = .82

For sex: 𝜂2
𝑝 = 𝑆𝑆effect

𝑆𝑆effect + 𝑆𝑆error
= 37090262

37090262 + 31302628 = .54

For sex × species: 𝜂2
𝑝 = 𝑆𝑆effect

𝑆𝑆effect + 𝑆𝑆error
= 1676557

1676557 + 31302628 = .05

We can also easily do this in R using the eta_squared function in the effectsize package
(Ben-Shachar, Lüdecke, and Makowski 2020) and setting the argument partial = TRUE.

library(effectsize)

eta_squared(ANOVA2_mdl,
partial = TRUE,
alternative = "two.sided")

# Effect Size for ANOVA (Type I)

Parameter | Eta2 (partial) | 95% CI
-------------------------------------------
species | 0.82 | [0.79, 0.85]
sex | 0.54 | [0.48, 0.60]
species:sex | 0.05 | [0.01, 0.10]

10.6 Two-way repeated measures ANOVA

A two-way repeated measures ANOVA (rmANOVA) would indicate that subjects are exposed
to each condition along two variables.

10.6.1 Determing degrees of freedom

Please refer to the following table to determine the degrees of freedom for two-way rmANOVA
effects (Morse 2018). Note that 𝑘1 is the number of groups in the first variable, and 𝑘2 is the
number of groups in the second variable.
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Degrees of freedom

Between subjects ANOVA
Main Effect (of one variable) 𝑘1 − 1 or 𝑘2 − 1
Interaction Effect (𝑘1 − 1) × (𝑘2 − 1)
Error-between (𝑘1 ⋅ 𝑘2) − 1
Error-within (𝑛 − 1) × (𝑘1 ⋅ 𝑘2 − 1)
Total 𝑛 − 1

10.6.2 Eta-squared from Two-way rmANOVA

For a two-way repeated measures ANOVA, we can use the weightloss data set from the
datarius package (Kassambara 2019). This data set contains a diet condition and a control
condition that tracked subjects across time (3 time points) for each of condition.

### load in and re-format data
library(tidyr)
data("weightloss", package = "datarium")
weightloss <- tidyr::pivot_longer(weightloss,cols = c("t1","t2","t3"))
colnames(weightloss) <- c("subject","diet","exercises","time", "weight_loss")
weightloss <- weightloss[weightloss$diet=='no',] # remove the diet intervention trials
####

rmANOVA2_mdl = aov(formula = weight_loss ~ time + exercises + time:exercises + Error(subject),
data = weightloss)

summary(rmANOVA2_mdl)

Error: subject
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 11 20.64 1.877

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

time 2 129.26 64.63 50.57 3.45e-13 ***
exercises 1 101.03 101.03 79.05 3.16e-12 ***
time:exercises 2 92.55 46.28 36.21 9.26e-11 ***
Residuals 55 70.29 1.28
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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From the table and graph above, we can see that there is substantial within-person change
in weight loss under the exercise condition and no discernible increase in weight loss without
exercising. This suggests that there is a substantial interaction effect. Like we did in the
between-subjects two-way ANOVA, we can calculate the partial eta squared values from the
ANOVA table

For time: 𝜂2
𝑝 = 𝑆𝑆effect

𝑆𝑆effect + 𝑆𝑆error-within
= 129.26

129.26 + 70.29 = .65

For exercise: 𝜂2
𝑝 = 𝑆𝑆effect

𝑆𝑆effect + 𝑆𝑆error-within
= 101.03

101.03 + 70.29 = .59

For sex × species: 𝜂2
𝑝 = 𝑆𝑆effect

𝑆𝑆effect + 𝑆𝑆error-within
= 92.55

92.55 + 70.29 = .57

Remember for the partial eta-squared, the denominator is not the total sum of squares rather it
is the effect sum of squares and the error. In the repeated measures ANOVA, the error should
only be for the within subject error because the variance between subjects is not something
we are interested about. We can also calculate this in R using the eta_squared() function
again.

library(effectsize)
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eta_squared(rmANOVA2_mdl,
partial = TRUE,
alternative = "two.sided")

# Effect Size for ANOVA (Type I)

Group | Parameter | Eta2 (partial) | 95% CI
-------------------------------------------------------
Within | time | 0.65 | [0.49, 0.75]
Within | exercises | 0.59 | [0.42, 0.70]
Within | time:exercises | 0.57 | [0.39, 0.69]

10.7 Effect Sizes for ANOVAs

ANOVA (Analysis of Variance) is a statistical method used to compare means across multiple
groups or conditions. It is mostly used when the outcome variable is continuous and the
predictor variables are categorical. Commonly used effect sizemeasures for ANOVAs / F-tests
include: eta-squared (𝜂2), partial eta-squared (𝜂2

𝑝), generalized eta-squared (𝜂2
𝐺), omega-

squared (𝜔2), partial omega-squared (𝜔), generalized omega-squared (𝜔2
𝐺), Cohen’s 𝑓 .

Type Description Section

𝜂2 - eta-squared Measures the variance explained of
the whole ANOVA model.

Section 10.7.1

𝜂2
𝑝 - Partial eta-squared Measures the variance explained by a

specific factor in the model.
Section 10.7.2

𝜂2
𝐺 - Generalized

eta-squared
Similar to 𝜂2, but uses the sum of
squares of all non-manipulated
variables in the calculation. This
allows meta-analysts to compare 𝜂𝐺
across different designs.

Section 10.7.3

𝜔2, 𝜔2
𝑝, 𝜔2

𝐺 - Omega
squared corrections

Corrections to bias observed in 𝜂2
measures. Can be interpreted in the
same way as 𝜂2.

Section 10.7.4

𝑓 - Cohen’s f This effect size can be interpreted as
the average Cohen’s 𝑑 between each
group.

Section 10.7.5
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10.7.1 Eta-Squared (𝜂2)

Eta-squared is the ratio between the between-group variance and the total variance. It de-
scribes the proportion of the total variability in the data that are accounted for by a particu-
lar factor. Therefore, it is a measure of variance explained. To calculate eta-squared (𝜂2)
we need to first calculate the total sum of squares (𝑆𝑆total) and the effect sum of squares
(𝑆𝑆effect),

𝑆𝑆total =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̄𝑦)2 (10.1)

Where ̄𝑦 is the grand mean (i.e., the mean of all data points collapsed across groups). To
calculate the sum of squares of the effect, we can take the predicted 𝑦 values ( ̂𝑦𝑖). In the
case of categorical predictors, ̂𝑦𝑖 is equal to the mean of the outcome within that individual’s
respective group. Therefore the sum of squares of the effect can be calculated using the
following formula:

𝑆𝑆effect =
𝑛

∑
𝑖=1

( ̂𝑦𝑖 − ̄𝑦)2. (10.2)

Now we can calculate the eta-squared value,

𝜂2 = 𝑆𝑆effect

𝑆𝑆total
(10.3)

The standard error of eta-square can be approximated from Olkin and Finn (1995):

𝑆𝐸𝜂2 = √4𝜂2 (1 − 𝜂2)2 (𝑛 + 𝑘 − 1)2

(𝑛2 − 1) (3 + 𝑛) (10.4)

The sampling distribution for 𝜂2 is asymmetric as all the values are bounded in the range,
0 to 1. The confidence interval surrounding 𝜂2 will likewise be asymmetric so instead of
calculating the confidence interval from the standard error, we can instead use a non-central
F-distribution using the degrees of freedom between groups (e.g., for three groups: 𝑑𝑓𝑏 =
𝑘 − 1 = 3 − 1 = 2) and the degrees of freedom within groups (e.g., for 100 subjects
and three groups: 𝑑𝑓𝑏 = 𝑛 − 𝑘 = 100 − 3 = 97) to obtain the confidence intervals.
Another option is to use bootstrapping procedure (i.e., resampling the observed data points
to construct a sampling distribution around 𝜂2, see Kirby and Gerlanc 2013) and then take

85



the .025 and .975 quantiles of that distribution. The R code below will compute the proper
confidence interval.

Where 𝑛 is the total sample size and 𝑘 is the number of predictors. In R, we can calculate 𝜂2
from a one-way ANOVA using the penguin data set from the palmerpenguins data package.
The aov function in base R allows the analyst to model an ANOVA with categorical predictors
on the right side (species) of the ~ and the outcome on the left side (body mass of penguin).
We can then use the eta_squared function in the effectsize package to calculate the point
estimate and confidence intervals.

# Example:
# group: species
# outcome: body mass

library(palmerpenguins)
library(effectsize)

# One-Way ANOVA
mdl1 <- aov(data = penguins,

body_mass_g ~ species)

eta_squared(mdl1,
partial = FALSE,
alternative = "two.sided")

# Effect Size for ANOVA (Type I)

Parameter | Eta2 | 95% CI
-------------------------------
species | 0.67 | [0.62, 0.71]

The species of the penguin explains the majority of the variation in body mass showing an eta-
squared value of 𝜂2 = .67 [.62, .71]. Let us now do the same thing with a two-way ANOVA,
using both species and sex as our categorical predictors.

# Example:
# group: species and sex
# outcome: body mass

# Two-Way ANOVA
mdl2 <- aov(data = penguins,

body_mass_g ~ species + sex)
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eta_squared(mdl2,
partial = FALSE,
alternative = "two.sided")

# Effect Size for ANOVA (Type I)

Parameter | Eta2 | 95% CI
-------------------------------
species | 0.67 | [0.62, 0.72]
sex | 0.17 | [0.10, 0.24]

Notice that the 𝜂2 does not change for species since the sum of squares is divided by the
total sum of squares rather than the residual sum of squares (see partial eta squared). The
example shows an eta-squared value for species of 𝜂2 = .67 [.62, .72] and for sex 𝜂2 = .17
[.10, .24].

10.7.2 Partial Eta-Squared (𝜂2
𝑝)

Partial eta-squared is the most commonly reported effect size measure for F-tests. It de-
scribes the proportion of variability associated with an effect when the variability associated
with all other effects identified in the analysis has been removed from consideration (hence,
it is “partial”). If you have access to an ANOVA table, the partial eta-squared for an effect is
calculated as:

𝜂2
𝑝 = 𝑆𝑆effect

𝑆𝑆effect + 𝑆𝑆error
(10.5)

There are two things to take note of here:

1. In a one-way ANOVA (one categorical predictor), partial eta-squared and eta-squared
are equivalent since 𝑆𝑆total = 𝑆𝑆effect + 𝑆𝑆error

2. If there are multiple predictors, the denominator will only include the sum of squares
of the effect of interest rather than the effect of all predictors (which is the case for the
non-partial eta squared).

In R, let us compare the partial eta-squared values for a one-way ANOVA and a two-way
ANOVA using the eta_squared function in the effectsize package.

# Example:
# group: species
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# outcome: body mass

# One-Way ANOVA
mdl1 <- aov(data = penguins,

body_mass_g ~ species)

eta_squared(mdl1,
partial = TRUE,
alternative = "two.sided")

For one-way between subjects designs, partial eta squared is equivalent
to eta squared. Returning eta squared.

# Effect Size for ANOVA

Parameter | Eta2 | 95% CI
-------------------------------
species | 0.67 | [0.62, 0.71]

The species of the penguin explains the majority of the variation in body mass showing a
partial eta-squared value of 𝜂2 = 𝜂2

𝑝 = .67 [.62, .71]. Let us now do the same thing with a
two-way ANOVA, using both species and sex as our categorical predictors.

# Example:
# group: species and sex
# outcome: body mass

# Two-Way ANOVA
mdl2 <- aov(data = penguins,

body_mass_g ~ species + sex)

eta_squared(mdl2,
partial = TRUE,
alternative = "two.sided")

# Effect Size for ANOVA (Type I)

Parameter | Eta2 (partial) | 95% CI
-----------------------------------------
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species | 0.81 | [0.78, 0.84]
sex | 0.53 | [0.46, 0.59]

Once we run a two-way ANOVA, the eta-squared value for species begins to differ. The
example shows a partial eta-squared value for species of 𝜂2

𝑝 = .81 [.78, .84] and for sex 𝜂2 =
.53 [.46, .59].

10.7.3 Generalized Eta-Squared (𝜂2
𝐺)

Generalized eta-squared was devised to allow effect size comparisons across studies with
different designs, which eta-squared and partial eta-squared cannot help with (refer to for de-
tails). If you can (either you are confident that you calculated it right, or the statistical software
that you use just happens to return this measure), report generalized eta-squared in addi-
tion to eta-squared or partial eta-squared. The biggest advantage of generalized eta-squared
is that it facilitates meta-analysis, which is important for the accumulation of knowledge. To
calculate generalized eta-squared, the denominator should be the sums of squares of all the
non-manipulated variables (i.e., variance of purely individual differences in the outcome rather
than individual differences in treatment effects). Note the formula will depend on the design of
the study. In R, the eta_squared function in the effectsize package supports the calculation
of generalized eta-squared by using the generalized=TRUE argument.

10.7.4 Omega squared corrections (𝜔2, 𝜔2
𝑝)

Similar to Hedges’ correction for small sample bias in standardized mean differences, 𝜂2 is
also biased. We can apply a correction to 𝜂2 and obtain a relatively unbiased estimate of
the population proportion of variance explained by the predictor. To calculate 𝜔, we need to
calculate the within group mean squared errors:

𝑀𝑆within = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2.

Where the predicted values of the outcome, ̂𝑦𝑖, are the mean value for the individual’s respec-
tive group.

𝜔2 = 𝑆𝑆effect − (𝑘 − 1) × 𝑀𝑆within

𝑆𝑆total + 𝑀𝑆within
(10.6)
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Where 𝑘 is the number of groups in the predictor (effect) variable. For partial omega-squared
values, we need the mean squared error of effect and the residuals which can easily be cal-
culated from their sum of squares:

𝑀𝑆effect = 𝑆𝑆effect

𝑛 (10.7)

𝑀𝑆error = 𝑆𝑆error

𝑛 (10.8)

Then to calculate the partial omega squared we can use the following formula:

𝜔2
𝑝 = (𝑘 − 1)(𝑀𝑆effect − 𝑀𝑆error)

(𝑘 − 1) × 𝑀𝑆effect + (𝑛 − 𝑘 − 1) × 𝑀𝑆error
(10.9)

In R, we can use the omega_squared function in the effectsize package to calculate both 𝜔2
and 𝜔2

𝑝. For the first example we will use a one-way ANOVA.

# Example:
# group: species
# outcome: body mass

library(palmerpenguins)

# One-Way ANOVA
mdl1 <- aov(data = penguins,

body_mass_g ~ species)

# omega-squared
omega_squared(mdl1,

partial = FALSE,
alternative = "two.sided")

# Effect Size for ANOVA (Type I)

Parameter | Omega2 | 95% CI
---------------------------------
species | 0.67 | [0.61, 0.71]
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# partial omega-squared
omega_squared(mdl1,

partial = TRUE,
alternative = "two.sided")

For one-way between subjects designs, partial omega squared is
equivalent to omega squared. Returning omega squared.

# Effect Size for ANOVA

Parameter | Omega2 | 95% CI
---------------------------------
species | 0.67 | [0.61, 0.71]

The species of the penguin explains the majority of the variation in body mass showing an
omega-squared value of 𝜔2 = .67 [.61, .71]. Note that the partial and non-partial omega
squared values do not show a difference as expected in a one-way ANOVA. Let us now do
the same thing with a two-way ANOVA, using both species and sex as our categorical pre-
dictors.

# Example:
# group: species and sex
# outcome: body mass

# Two-Way ANOVA
mdl2 <- aov(data = penguins,

body_mass_g ~ species + sex)

# omega-squared
omega_squared(mdl2,

partial = FALSE,
alternative = "two.sided")

# Effect Size for ANOVA (Type I)

Parameter | Omega2 | 95% CI
---------------------------------
species | 0.67 | [0.62, 0.72]
sex | 0.17 | [0.10, 0.24]
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# partial omega-squared
omega_squared(mdl2,

partial = TRUE,
alternative = "two.sided")

# Effect Size for ANOVA (Type I)

Parameter | Omega2 (partial) | 95% CI
-------------------------------------------
species | 0.81 | [0.78, 0.84]
sex | 0.53 | [0.46, 0.58]

Once we run a two-way ANOVA, the eta-squared value for species diverge. The example
shows a partial eta-squared value for species of 𝜔2

𝑝 = .81 [.78, .84] and for sex 𝜔2 = .53 [.46,
.58].

10.7.5 Cohen’s 𝑓
Cohen’s 𝑓 is defined as the ratio of the standard deviations of the group means and the com-
mon standard deviation within each of the groups (note that ANOVA assumes equal variances
among groups). Cohen’s 𝑓 is the effect size measure asked for by G*Power for power analysis
for F-tests. This can be calculated easily from the eta-squared value,

𝑓 = √ 𝜂2

1 − 𝜂2 (10.10)

or by the 𝜔2 value,

𝑓 = √ 𝜔2

1 − 𝜔2 (10.11)

Cohen’s 𝑓 can be interpreted as “the average Cohen’s 𝑑 (i.e., standardized mean difference)
between groups”. Note that there is no directionality to this effect size (𝑓 is always greater
than zero), therefore two studies showing the same 𝑓 with the same groups, can have very
different patterns of group mean differences. Note that Cohen’s 𝑓 is also often reported as 𝑓2.
The confidence intervals for Cohen’s 𝑓 can be computed from the upper bounds and lower
bounds of the confidence intervals from eta-square or omega-square using the formulas to

calculate 𝑓 (e.g., for the upper bound 𝑓𝑈𝑃 = √ 𝜂2
𝑈𝑃

1−𝜂2
𝑈𝑃

).
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In R, we can use the cohens_f function in the effectsize package to calculate Cohen’s 𝑓 .
We will again use example data from the palmerpenguins package.

# Example:
# group: species
# outcome: body mass

# ANOVA
mdl <- aov(data = penguins,

body_mass_g ~ species)

cohens_f(mdl,alternative = "two.sided")

For one-way between subjects designs, partial eta squared is equivalent
to eta squared. Returning eta squared.

# Effect Size for ANOVA

Parameter | Cohen's f | 95% CI
------------------------------------
species | 1.42 | [1.27, 1.57]

In the example above, the difference in body mass between the three penguin species was
very large showing a Cohen’s 𝑓 of 1.42 [1.27, 1.57].

10.8 Reporting ANOVA results

For ANOVAs/F-tests, you will always need to report two kinds of effects: the omnibus effect
of the factor(s) and the effect of planned contrasts or post hoc comparisons.

For instance, imagine that you are comparing three groups/conditions with a one-way ANOVA.
The ANOVA will first return an F-statistic, the degrees of freedom, and the associated p-value.
Here, you need to calculate the size of this omnibus factor effect in eta-squared, partial eta-
squared, or generalized eta-squared. Suppose the omnibus effect is significant. You now
know that there is at least one group that differs from the others. You want to know which
group(s) differ from the others, and how much they differ. Therefore, you conduct post hoc
comparisons on these groups. Because post hoc comparisons compare each group with the
others in pairs, you will get a t-statistic and p-value for each comparison. For this, you need
to calculate and report Cohen’s 𝑑 or Hedges’ 𝑔.
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Imagine that you have two independent variables or factors, and you conduct a two-by-two
factorial ANOVA. The first thing to do then is look at the interaction. If the interaction is signifi-
cant, you again report the associated omnibus effect size measures, and proceed to analyze
the simple effects. Depending on your research question, you compare the levels of one IV on
each level of the other IV. You will report d or g for these simple effects. If the interaction is not
significant, you look at themain effects and report the associated omnibus effect. You then pro-
ceed to analyze the main effect by comparing the levels of one IV while collapsing/aggregating
the levels of the other IV. You will report 𝑑 or 𝑔 for these pairwise comparisons.

Note that lower-order effects are not directly interpretable if higher-order effects are significant.
If you have a significant interaction in a two-way ANOVA, you cannot interpret the main effects
directly. If you have a significant three-way interaction in a three-way ANOVA, you cannot
interpret the main effects or the two-way interactions directly, regardless of whether they are
significant or not.

In R, we can use the summary function to display the anova table. We can also append the
table to include, for example, partial omega squared values and their respective confidence
intervals

# ANOVA mdl
mdl <- aov(data = penguins,

body_mass_g ~ species + sex)

# calculate partial omega-squared values
omega_values <- omega_squared(mdl, alternative = "two.sided")

# create table of partial omega-squared values
omega_table <- data.frame(omega_sq = MOTE::apa(c(omega_values$Omega2_partial,NA)),

omega_low = MOTE::apa(c(omega_values$CI_low,NA)),
omega_high = MOTE::apa(c(omega_values$CI_high,NA)))

# append omega values to summary of anova table
cbind(summary(mdl)[[1]],

omega_table)

Df Sum Sq Mean Sq F value Pr(>F) omega_sq omega_low
species 2 145190219 72595109.6 724.2080 3.079053e-121 0.813 0.781
sex 1 37090262 37090261.8 370.0121 8.729411e-56 0.526 0.457
Residuals 329 32979185 100240.7 NA NA NA NA

omega_high
species 0.838
sex 0.585
Residuals NA

94



11 Differences in Variability

Occasionally researchers would like to compare the variations between two conditions or
groups rather than the mean. Two commonly used are the natural logarithms of variability
ratio (𝑙𝑛𝑉 𝑅) and the coefficient of variance ratio (𝑙𝑛𝐶𝑉 𝑅). The latter of these can be use-
ful when there may be a mean-variance relationship present (i.e., variances tend to increase
with mean values) in order to account for this. An lnVR or lnCVR of zero therefore would
indicate no difference in variation between the two groups, an lnVR or lnCVR of >0 would
indicate larger variance in group 1, and an lnVR or lnCVR of <0 would indicate larger variance
in group 2. There are both independent and dependent versions of these effect sizes (see
Senior, Viechtbauer, and Nakagawa 2020). To obtain confidence intervals of a the lnVR or
lnCVR then we, for example 95% confidence intervals, we merely multiply the standard error
for the parameter by 1.96 similarly to other effect size statistics,

𝐶𝐼𝑙𝑛𝑉 𝑅/𝑙𝑛𝐶𝑉 𝑅 = 𝑙𝑛𝑉 𝑅 ± 1.96 ⋅ 𝑆𝐸𝑙𝑛𝑉 𝑅/𝑙𝑛𝐶𝑉 𝑅 (11.1)

Here is a table for every effect size discussed in this chapter:

Type Description Section

Variability Ratios (VR) Section 11.1
𝑙𝑛𝑉 𝑅ind - Natural
Logarithm of variability
ratio for independent
groups

Used to compare the standard
deviations (i.e., the variability)
between two groups.

Section 11.1.1

𝑙𝑛𝑉 𝑅dep - Natural
Logarithm of variability
ratio for dependent groups

Used to compare the standard
deviations (i.e., the variability)
between paired groups (i.e., repeated
measures designs).

Section 11.1.2

Coefficient of Variation
Ratios (CVR)

Section 11.2
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Type Description Section

𝑙𝑛𝐶𝑉 𝑅ind - Natural
Logarithm of coefficient
variation ratio for
independent groups

Used to compare the variation
between two groups. More useful
than a variability ratio (𝑙𝑛𝑉 𝑅ind)
when there is a relationship between
the mean and variance.

Section 11.2.1

𝑙𝑛𝐶𝑉 𝑅dep - Natural
Logarithm of coefficient
variation ratio for
dependent groups

Used to compare the variation
between paired groups (i.e., repeated
measures). More useful than a
variability ratio (𝑙𝑛𝑉 𝑅dep) when there
is a relationship between the mean
and variance.

Section 11.2.1

11.1 Variability Ratios

11.1.1 Natural Logarithm of Variability Ratio for Independent Groups (𝑙𝑛𝑉 𝑅ind)

The variability ratio for independent groups can be calculated by taking the natural logarithm of
the standard deviation within one group divided by the standard deviation in another group,

𝑙𝑛𝑉 𝑅ind = ln(𝑆𝑇
𝑆𝐶

) + 𝐶𝐹 (11.2)

Where 𝐶𝐹 is a small sample correction factor calculated as,

𝐶𝐹 = 1
2(𝑛𝑇 − 1) − 1

2(𝑛𝐶 − 1) (11.3)

A 𝑙𝑛𝑉 𝑅 of zero therefore would indicate no difference in variation between the two groups, a
𝑙𝑛𝑉 𝑅 of >0 would indicate larger variance in group 1, and 𝑙𝑛𝑉 𝑅 of <0 would indicate larger
variance in group 2. The standard error of the VR can be calculated as,

𝑆𝐸𝑙𝑛𝑉 𝑅ind
= √ 𝑛𝑇

2(𝑛𝑇 − 1)2 + 𝑛𝐶
2(𝑛𝐶 − 1)2 (11.4)

In R, we can simply use the metafor packages escalc() function from the metafor package
(Viechtbauer 2010) as follows:
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# Example:
# Group 1: standard deviation = 4.5, sample size = 50
# Group 2: standard deviation = 3.5, sample size = 50

library(metafor)

# prepare the data
SD1 <- 4.5
SD2 <- 3.5
n1 <- n2 <- 50

lnVRind <- escalc(
measure = "VR",
sd1i = SD1,
sd2i = SD2,
n1i = n1,
n2i = n2

)

lnVRind$SE <- sqrt(lnVRind$vi)

# calculate confidence interval
lnVRind_low <- lnVRind$yi - 1.96*lnVRind$SE
lnVRind_high <- lnVRind$yi + 1.96*lnVRind$SE

# print the VR value and confidence intervals
data.frame(lnVRind = MOTE::apa(lnVRind$yi),

lnVRind_low = MOTE::apa(lnVRind_low),
lnVRind_high = MOTE::apa(lnVRind_high))

lnVRind lnVRind_low lnVRind_high
1 0.251 -0.029 0.531

From the example, we obtain a natural log variability ratio of 𝑙𝑛𝑉 𝑅ind = 0.25 [-0.03, 0.53].

11.1.2 Natural Logarithm of Variability Ratio for Dependent Groups (𝑙𝑛𝑉 𝑅dep)

The variability ratio for dependent groups can similarly be calculated by taking the natural log-
arithm of the standard deviation within one group divided by the standard deviation in another
group,
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𝑙𝑛𝑉 𝑅dep = ln(𝑆𝑇
𝑆𝐶

) (11.5)

Note, the correction factor for small sample size bias is not relevant here as due to its calcu-
lation its value is zero.

𝑆𝐸𝑙𝑛𝑉 𝑅dep
= √ 𝑛

𝑛 − 1 − 𝑟2

𝑛 − 1 + 𝑟4 (𝑆8
𝑇 + 𝑆8

𝐶)
2(𝑛 − 1)2𝑆4

𝑇 + 𝑆4
𝐶

(11.6)

In R, we can simply use the metafor packages escalc() function as follows:

# Example:
# Group 1: standard deviation = 4.5
# Group 2: standard deviation = 3.5
# Sample size = 50
# Correlation = 0.4

library(metafor)

# prepare the data
SD1 <- 4.5
SD2 <- 3.5
n <- 50
r <- 0.4

# use escalc to compute lnVRdep
lnVRdep <- escalc(
measure = "VRC",
sd1i = SD1,
sd2i = SD2,
ni = n1,
ri = r

)

lnVRdep$SE <- sqrt(lnVRdep$vi)

# calculate confidence interval
lnVRdep_low <- lnVRdep$yi - 1.96*lnVRdep$SE
lnVRdep_high <- lnVRdep$yi + 1.96*lnVRdep$SE
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# print the VR value and confidence intervals
data.frame(lnVRdep = MOTE::apa(lnVRdep$yi),

lnVRdep_low = MOTE::apa(lnVRdep_low),
v_high = MOTE::apa(lnVRdep_high))

lnVRdep lnVRdep_low v_high
1 0.251 -0.005 0.508

11.2 Coefficient of Variation Ratios

11.2.1 Natural Logarithm of Coefficient of Variation Ratio for independent
groups (lnCVR_ind)

The coefficient of variation ratio for independent groups can be calculated by taking the natural
logarithm of the coefficient of variation within one group divided by the coefficient of variation
in another group,

𝑙𝑛𝐶𝑉 𝑅ind = ln(𝐶𝑉𝑇
𝐶𝑉𝐶

) + 𝐶𝐹 (11.7)

Where 𝐶𝑉𝑇 = 𝑆𝑇 /𝑀𝑇 , 𝐶𝑉𝐶 = 𝑆𝐶/𝑀𝐶 , and 𝑀 indicates the mean of the respective
group. The correction factor, 𝐶𝐹 , is a small sample size bias correction factor that combines
that from the lnRR (presented earlier) and the lnVR calculated as,

𝐶𝐹 = 1
2(𝑛𝑇 − 1) − 1

2(𝑛𝐶 − 1) + 𝑆2
𝑇

2(𝑛𝑇 𝑀2
𝑇 ) + 𝑆2

𝐶
2(𝑛𝐶𝑀2

𝐶) (11.8)

In R, we can simply use the escalc() function from the metafor package as follows:

# Example:
# Group 1: mean = 22.4, standard deviation = 4.5, sample size = 50
# Group 2: mean = 20.1, standard deviation = 3.5, sample size = 50

library(metafor)

# prepare the data
M1 <- 22.4
M2 <- 20.1
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SD1 <- 4.5
SD2 <- 3.5
n1 <- n2 <- 50

lnCVRind <- escalc(
measure = "CVR",
m1i = M1,
m2i = M2,
sd1i = SD1,
sd2i = SD2,
n1i = n1,
n2i = n2

)

lnCVRind$SE <- sqrt(lnCVRind$vi)

# calculate confidence interval
lnCVRind_low <- lnCVRind$yi - 1.96*lnCVRind$SE
lnCVRind_high <- lnCVRind$yi + 1.96*lnCVRind$SE

# print the VR value and confidence intervals
data.frame(lnCVRind = MOTE::apa(lnCVRind$yi),

lnCVRind_low = MOTE::apa(lnCVRind_low),
lnCVRind_high = MOTE::apa(lnCVRind_high))

lnCVRind lnCVRind_low lnCVRind_high
1 0.143 -0.147 0.433

11.2.2 Natural Logarithm of Coefficient of Variation Ratio for independent
groups (𝑙𝑛𝐶𝑉 𝑅dep)

The coefficient of variation ratio for dependent groups can be similarly calculated by taking
the natural logarithm of the coefficient of variation within one group divided by the coefficient
of variation in another group,

𝑙𝑛𝐶𝑉 𝑅dep = ln(𝐶𝑉𝑇
𝐶𝑉𝐶

) + 𝐶𝐹 (11.9)

Where 𝐶𝑉𝑇 = 𝑆𝑇 /𝑀𝑇 , 𝐶𝑉𝐶 = 𝑆𝐶/𝑀𝐶 and CF is a small sample size bias correction
factor that combines that from the 𝑙𝑛𝑉 𝑅 (presented earlier) and the 𝑙𝑛𝑉 𝑅 (note again for
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dependent cases this is zero and so omitted) calculated as,

𝐶𝐹 = 𝑆2
𝑇

2𝑛𝑀2
𝑇

− 𝑆2
𝐶

2𝑛𝑀2
𝐶

(11.10)

The standard error of the 𝑙𝑛𝐶𝑉 𝑅dep can be calculated as,

𝑆𝐸𝑙𝑛𝐶𝑉 𝑅dep
= √ 𝑆2

𝑇
𝑛𝑀2

𝑇
+ 𝑆2

𝑇
𝑛𝑀2

𝑇
+ 𝑆4

𝑇
2𝑛2𝑀4

𝑇
+ 𝑆4

𝑇
2𝑛2𝑀4

𝑇
+ 2𝑟𝑆𝐶𝑆𝑇

𝑛𝑀𝐶𝑀𝑇
+ 𝑟2𝑆2

𝑇 𝑆2
𝐶(𝑀4

𝑇 + 𝑀4
𝐶)

2𝑛2𝑀4
𝑇 𝑀4

𝐶
(11.11)

In R, we can simply use the metafor packages escalc() function as follows:

# Example:
# Group 1: standard deviation = 4.5
# Group 2: standard deviation = 3.5
# Sample size = 50
# Correlation = 0.4
library(metafor)

# prepare the data
M1 <- 22.4
M2 <- 20.1
SD1 <- 4.5
SD2 <- 3.5
n <- 50
r <- 0.4

lnCVRdep <- escalc(
measure = "CVRC",
m1i = M1,
m2i = M2,
sd1i = SD1,
sd2i = SD2,
ni = n1,
ri = r

)

lnCVRdep$SE <- sqrt(lnCVRdep$vi)

# calculate confidence interval
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lnCVRdep_low <- lnCVRdep$yi - 1.96*lnCVRdep$SE
lnCVRdep_high <- lnCVRdep$yi + 1.96*lnCVRdep$SE

# print the CVR value and confidence intervals
data.frame(lnCVRdep = MOTE::apa(lnCVRdep$yi),

lnCVRdep_low = MOTE::apa(lnCVRdep_low),
lnCVRdep_high = MOTE::apa(lnCVRdep_high))

lnCVRdep lnCVRdep_low lnCVRdep_high
1 0.143 -0.120 0.406
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12 Non-Parametric Tests

Sometimes the assumptions of parametric models (e.g., normality of model residuals) are
suspect. This is often the case in psychology when using ordinal scales. In these cases
a “non-parametric” approach may be helpful. A statistical test being non-parametric means
that the parameters (i.e., mean and variance for “normal” Gaussian model) are not estimated;
despite popular belief the data themselves are never non-parametric. Additionally, these tests
are not tests of the median (Divine et al. 2018). Rather one can consider than as rank based
or proportional odds tests. If the scores you are analyzing are not metric (i.e., ordinal) due to
the use of a Likert-Scale and you still use parametric tests such as t-tests, you run the risk of
a high false-positive probability (e.g., Liddell and Kruschke (2018)).

If the scores you are analyzing are not metric (i.e., ordinal) due to the use of a Likert scale and
you still use parametric tests such as t-tests, you run the risk of a high false-positive probability
(e.g., Liddel & Kruschke, 2018). Note that in German, scale anchors have been developed
that are very similar to Likert scale but can be interpreted as metric (e.g., Rohrmann, 1978).

We will briefly discuss here two groups of tests that can be applied to the independent and
paired samples then present 3 effect sizes that can accompany these tests as well as their
calculations and examples in R.

Here is a table for every effect size discussed in this chapter:

Type Description Section

Rank-Biserial
Correlation

Section 12.3.1

𝑟𝑟𝑏 (dependent groups) -
Rank-biserial correlation
on dependent groups

A measure of dominance between
dependent groups (i.e., repeated
measure designs).

Section 12.3.1.1

𝑟𝑟𝑏 (independent groups) -
Rank Biserial Correlation
on independent groups

A measure of dominance between
two independent groups.

Section 12.3.1.1

Concordance
Probability

Section 12.3.2
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Type Description Section

𝑝𝑐 - Concordance
probability

A simple transformation of the
rank-biserial correlation and it
represents the probability of
superiority in one group relative to the
other group. This section shows R
code for both independent and
dependent samples.

Section 12.3.2

Wilcoxon-Mann-Whitney
Odds

Section 12.3.3

𝑂𝑊𝑀𝑊 -
Wilcoxon-Mann-Whitney
Odds

Also known as the Generalized Odds
Ratio, it transforms the concordance
probability to an Odds Ratio. This
section shows R code for both
independent and dependent samples.

Section 12.3.3

12.1 Wilcoxon-Mann-Whitney tests

A non-parametric alternative to the t-test is theWilcoxon-Mann-Whitney (WMW) group of tests.
When comparing two independent samples this is called a Wilcoxon rank-sum test, but some-
times referred to as a Mann-Whitney U Test. When using it on paired samples, or one sample,
it is a signed rank test. These are generally referred to as tests of “symmetry” (Divine et al.
2018).

# Paired samples ----

data(sleep)

# wilcoxon test
wilcox.test(extra ~ group,

data = sleep,
paired = TRUE)

Wilcoxon signed rank test with continuity correction

data: extra by group
V = 0, p-value = 0.009091
alternative hypothesis: true location shift is not equal to 0
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# Two Sample ------
# data import from likert
data(mass, package = "likert")
df_mass = mass |>
as.data.frame() |>
janitor::clean_names()

# function needs input as a numeric
# ordered factors can be converted to ranks
# Again, the warning can be ignored
wilcox.test(rank(math_relates_to_my_life) ~ gender,

data = df_mass)

Wilcoxon rank sum test with continuity correction

data: rank(math_relates_to_my_life) by gender
W = 23, p-value = 0.1104
alternative hypothesis: true location shift is not equal to 0

12.2 Brunner-Munzel Tests

Brunner-Munzel’s tests can be used instead of the WMW tests. The primary reason is the
interpretation of the test (Munzel and Brunner 2002; Brunner and Munzel 2000; Neubert and
Brunner 2007). Recently, Karch (2021) argued that the Mann-Whitney test is not a decent
test of equality of medians, distributions or stochastic equality. The Brunner-Munzel test, on
the other hand, provides a sensible approach to test for stochastic equality.

The Brunner-Munzel tests measure a rank based “relative effect” or “stochastic superiority
probability”. The test statistic ( ̂𝑝) is essentially the probability of a value in one condition being
greater than other while splitting the ties1. However, Brunner-Munzel tests can not be applied
to the single group or one-sample designs.

̂𝑝 = 𝑃(𝑋 < 𝑌 ) + 1
2 ⋅ 𝑃 (𝑋 = 𝑌 ) (12.1)

1Note, for paired samples, this does not refer to the probability of an increase/decrease in paired sample but
rather the probability that a randomly sampled value of X will be greater/less than Y. This is also referred to as
the “relative” effect in the literature. Therefore, the results will differ from the concordance probability.
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These tests are relatively new so there are very few packages offer Brunner-Munzel. More-
over, Karch (2021) argues that the stochastic superiority effect size ( ̂𝑝) offers a nuanced way
to interpret group differences by visualizing observations as competitors in a contest. Pro-
pounded by scholars like Cliff (1993) and Divine et al. (2018), it views each observation from
one group in a duel with every observation from another. If an observation from the first group
surpasses its counterpart, it “wins,” and the group garners a point; tied observations yield half
a point to each group. This concept can be further elucidated through a bubble plot, where
placement above, below, or on the diagonal indicates the dominance of one group’s observa-
tion over the other. Other interpretations, like transforming p to the Wilcoxon-Mann-Whitney
(WMW) odds or Cliff’s δ offer deeper insights. There are implementations of the Brunner-
Munzel test in a few packages in R (i.e. lawstat, rankFD, and brunnermunzel). Karch (2021)
recommends the brunnermunzel.permutation.test function from the brunnermunzel pack-
age. The TOSTER R package can also provide coverage (Läkens 2017; Caldwell 2022).

# Install package for data cleaning
# install.packages('janitor')
library(janitor)

# Paired samples
library(TOSTER)
data(sleep)

# When sample sizes are small
# a permutation version should be used.
# When this is done a seed should be set.
set.seed(2124)
brunner_munzel(extra ~ group,

data = sleep,
paired = TRUE,
perm = TRUE)

Paired Brunner-Munzel permutation test

data: extra by group
t = -3.7266, df = 9, p-value = 0.003906
alternative hypothesis: true relative effect is not equal to 0.5
95 percent confidence interval:
0.1233862 0.3866138
sample estimates:
p(X<Y) + .5*P(X=Y)

0.255
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# Two Sample
# data import from likert
data(mass, package = "likert")
df_mass = mass |>
as.data.frame() |>
clean_names()

# function needs input as a numeric
# ordered factors can be converted to ranks
# Again, the warning can be ignored
set.seed(24111)
TOSTER::brunner_munzel(
rank(math_relates_to_my_life) ~ gender,
data = df_mass,
paired = FALSE,
perm = TRUE

)

two-sample Brunner-Munzel permutation test

data: rank(math_relates_to_my_life) by gender
t = -2.1665, df = 17.953, p-value = 0.0642
alternative hypothesis: true relative effect is not equal to 0.5
95 percent confidence interval:
0.04761905 0.54961243
sample estimates:
p(X<Y) + .5*P(X=Y)

0.2738095

12.3 Rank-Based Effect Sizes

Since the mean and standard deviation are not estimated for a WMW or Brunner-Munzel
test, it would be inappropriate to present a standardized mean difference (e.g., Cohen’s d)
to accompany these tests. Instead, a rank based effect size (i.e., based on the ranks of the
observed values) can be reported to accompany the non-parametric statistical tests.
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12.3.1 Rank-Biserial Correlation

The rank-biserial correlation (𝑟𝑟𝑏) is considered a measure of dominance. The correlation
represents the difference between the proportion of favorable and unfavorable pairs or signed
ranks. Larger values indicate that more of 𝑋 is larger than more of 𝑌 , with a value of (−1)
indicates that all observations in the second, 𝑌 , group are larger than the first, 𝑋, group, and
a value of (+1) indicates that all observations in the first group are larger than the second.

12.3.1.1 Dependent Groups

1. Calculate difference scores between pairs:

𝐷 = 𝑋2 − 𝑋1

2. Calculate the positive and negative rank sums:

When 𝐷𝑖 > 0, 𝑅⊕ = ∑
𝑖=1

−1 ⋅ sign(𝐷𝑖) ⋅ rank(|𝐷𝑖|)

When 𝐷𝑖 < 0, 𝑅⊖ = ∑
𝑖=1

−1 ⋅ sign(𝐷𝑖) ⋅ rank(|𝐷𝑖|)

3. We can set a constant, 𝐻 , to be -1 when the rank positive rank sum is greater than or
equal to the negative rank sum (𝑅⊕ ≥ 𝑅⊖) or we can set𝐻 to 1 when the rank positive
rank sum is less than the negative rank sum (𝑅⊕ < 𝑅⊖).

𝐻 = {−1 𝑅⊕ ≥ 𝑅⊖
1 𝑅⊕ < 𝑅⊖

4. Calculate rank-biserial correlation:

𝑟𝑟𝑏 = 4𝐻 × ∣min(𝑅⊕, 𝑅⊖) − .5 × (𝑅⊕ + 𝑅⊖)
𝑛(𝑛 + 1) ∣ (12.2)

5. For paired samples, or one sample, the standard error is calculated as the following:

𝑆𝐸𝑟𝑟𝑏
= √2(2𝑛3 + 3𝑛2 + 𝑛)

6(𝑛2 + 𝑛) (12.3)
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6. The confidence intervals can then be calculated by Z-transforming the correlation.

𝑍𝑟𝑏 = arctanh(𝑟𝑟𝑏)
7. Calculate the standard error of the Z-transformed correlation

𝑆𝐸𝑍𝑟𝑏
=

𝑆𝐸𝑟𝑟𝑏

1 − 𝑟2
𝑟𝑏

(12.4)

8. Then the confidence interval can be calculated and then back-transformed.

𝐶𝐼𝑟𝑟𝑏
= tanh(𝑍𝑟𝑏 ± 1.96 ⋅ 𝑆𝐸𝑍𝑟𝑏

) (12.5)

In R, we can use the ses_calc() function in TOSTER package (Läkens 2017). For the following
example, we will calculate the rank-biserial correlation in the sleep dataset:

# Dependent groups

data(sleep)
library(TOSTER)

# When sample sizes are small
# a permutation version should be used.
# When this is done a seed should be set.
set.seed(2124)
ses_calc(extra ~ group,

data = sleep,
paired = TRUE)

estimate lower.ci upper.ci conf.level
Rank-Biserial Correlation 0.9818182 0.928369 0.9954785 0.95

The example shows a rank-biserial correlation is 𝑟𝑟𝑏 = .982 [.938, .995]. This suggests that
nearly every individual in the sample showed an increase in condition 2 relative to condition 1.
As you can see from the figure below, only one individual showed a decline (individual shown
in red).
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12.3.1.2 Independent Groups

1. Calculate the ranks for each observation across all observations of in group 1 and 2

𝑅 = rank(𝑋)
2. Calculate the rank sums from each group

𝑈1 = (
𝑛1

∑
𝑖=1

𝑅1𝑖) − 𝑛1 ⋅ 𝑛1 + 1
2

𝑈2 = (
𝑛2

∑
𝑖=1

𝑅2𝑖) − 𝑛2 ⋅ 𝑛2 + 1
2

3. Calculate rank biserial correlation

𝑟𝑟𝑏 = 𝑈1
𝑛1𝑛2

− 𝑈2
𝑛1𝑛2

(12.6)
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4. For independent samples, the standard error is calculated as the following:

𝑆𝐸𝑟𝑏 = √𝑛1 + 𝑛2 + 1
3𝑛1𝑛2

(12.7)

5. The confidence intervals can then be calculated by transforming the estimate.

𝑍𝑟𝑏 = arctanh(𝑟𝑟𝑏)
6. Calculate the standard error of the Z-transformed correlation

𝑆𝐸𝑍𝑟𝑏
=

𝑆𝐸𝑟𝑟𝑏

1 − 𝑟2
𝑟𝑏

(12.8)

7. Then the confidence interval can be calculated and then back-transformed.

𝐶𝐼𝑟𝑟𝑏
= tanh(𝑍𝑟𝑏 ± 1.96 ⋅ 𝑆𝐸𝑍𝑟𝑏

) (12.9)

In R, we can use ses_calc in the TOSTER package can be utilized to calculate 𝑟𝑟𝑏.

# Two Sample
# install the janitor package for data cleaning
# clean and import data from likert
data(mass, package = "likert")
df_mass = mass |>
as.data.frame() |>
janitor::clean_names()

# function needs input as a numeric
# ordered factors can be converted to ranks
# Again, the warning can be ignored
set.seed(24111)
ses_calc(
rank(math_relates_to_my_life) ~ gender,
data = df_mass,
paired = FALSE

)
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estimate lower.ci upper.ci conf.level
Rank-Biserial Correlation -0.452381 -0.7831567 0.07794462 0.95

The example shows a rank-biserial correlation is 𝑟𝑟𝑏 = -.45 [-.78, .08].

12.3.2 Concordance Probability

In the two sample case, concordance probability is the probability that a randomly chosen
subject from one group has a response that is larger than that of a randomly chosen subject
from the other group. In the two sample case, this is roughly equivalent to the statistic of the
Brunner-Munzel test. In the paired sample case, it is the probability that a randomly chosen
difference score (𝐷) will have a positive (+) sign plus 0.5 times the probability of a tie (no/zero
difference). The concordance probability can go by many names. It is also referred to as the c-
index, the non-parametric probability of superiority, or the non-parametric common language
effect size (CLES).

The calculation of concordance can be derived from the rank-biserial correlation. The concor-
dance probability (𝑝𝑐) can be converted from the correlation.

𝑝𝑐 = 𝑟𝑟𝑏 + 1
2 (12.10)

In R, we can use the ses_calc() function again along with the sleep data set. For repeated
measures experiments, the concordance probability in dependent groups can be calculated
utilizing the paired=TRUE argument in the ses_calc() function:

# Dependent Groups
library(TOSTER)

data(sleep)

ses_calc(extra ~ group,
data = sleep,
paired = TRUE,
ses = "c")

estimate lower.ci upper.ci conf.level
Concordance 0.9909091 0.9641845 0.9977392 0.95

For two independent groups, the concordance probability can be calculated similarly without
specifying the paired argument:
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# Independent Groups
# data import from likert
data(mass, package = "likert")
df_mass = mass |>
as.data.frame() |>
janitor::clean_names()

ses_calc(rank(math_relates_to_my_life) ~ gender,
data = df_mass,
ses = "c")

estimate lower.ci upper.ci conf.level
Concordance 0.2738095 0.1084217 0.5389723 0.95

12.3.3 Wilcoxon-Mann-Whitney Odds

The Wilcoxon-Mann-Whitney odds (O’Brien and Castelloe 2006), also known as the “Gener-
alized Odds Ratio”(Agresti 1980), essentially transforms the concordance probability into an
odds ratio.

The odds can be converted from the concordance by taking the logit of the concordance. This
will provide the log odds and this can be exponentiated to obtain the odds,

𝑂𝑊𝑀𝑊 = exp [logit(𝑝𝑐)] (12.11)

The exponential value of the log-odds will provide the odds on a more interpretable scale.
Taking just the logit of the concordance probability would give us the log odds such that,

log(𝑂𝑊𝑀𝑊 ) = logit(𝑝𝑐) (12.12)

In R, we can calculate𝑂𝑊𝑀𝑊 by using the ses_calc() function from the TOSTER package:

# Dependent Groups

data(sleep)

TOSTER::ses_calc(extra ~ group,
data = sleep,
paired = TRUE,

ses = "odds")
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estimate lower.ci upper.ci conf.level
WMW Odds 109 26.92087 441.3305 0.95

We can also calculate 𝑂𝑊𝑀𝑊 in independent groups using the same function:

# Independent Groups

# data import from likert
data(mass, package = "likert")
df_mass = mass |>
as.data.frame() |>
janitor::clean_names()

TOSTER::ses_calc( rank(math_relates_to_my_life) ~ gender,
data = df_mass,

ses = "odds")

estimate lower.ci upper.ci conf.level
WMW Odds 0.3770492 0.1216064 1.169067 0.95
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13 Regression

Regression is a method of predicting an outcome variable from one or more predictor vari-
ables.

13.1 Regression Overview

In a simple linear regression there is only one predictor (𝑥) and one outcome (𝑦) in the regres-
sion model,

𝑦 = 𝑏0 + 𝑏1𝑥 + 𝑒 (13.1)

We can visualize this model by showing data from the palmer penguins data package:
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Simple Linear Regression

where 𝑏0 is the intercept coefficient, 𝑏1 is the slope coefficient, and 𝑒 is the error term that is
normally distributed with a mean of zero and a variance of 𝜎2. For a simple linear regression
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we can obtain an unstandardized regression coefficient by finding the optimal value of 𝑏0 and
𝑏1 that minimizes the variance in 𝑒, namely, 𝜎2. In a multiple regression we can model 𝑦 as
a function of multiple predictor variables such that,

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ... + 𝑒 (13.2)

Where the coefficients are all optimized jointly to minimize the error variance. The line pro-
duced by the regression equation is our predicted values of 𝑦𝑖, however it can also be inter-
preted as the mean of 𝑦 given some value of 𝑥. In a regression equation we can construct
more complex models that include non-linear terms such as interactions or polynomials (or
any sort of function of 𝑥). For example, we can create a model where we include a main effect,
𝑥1, a quadratic polynomial term, 𝑥2

1 and an interaction term, 𝑥1𝑥2,

𝑦𝑖 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2
2 + 𝑏2𝑥1𝑥2 + 𝑒𝑖 (13.3)

13.2 Effect Sizes for a Linear Regression

If we want to calculate the variance explained in the outcome by all the predictor variables,
we can compute an 𝑅2 value. The 𝑅2 value can be interpreted one of two ways:

1. the variance in 𝑦 explained by the predictor variables
2. the square of the correlation between predicted 𝑦 values and observed (actual) 𝑦 values

Likewise we can also take the square root of 𝑅2 to get the correlation between predicted and
observed 𝑦 values. We can construct an linear regression model quite easily in base R using
the lm() function. We will use the palmerpenguins dataset for our example.

library(palmerpenguins)

mdl <- lm(bill_length_mm ~ flipper_length_mm + bill_depth_mm,
data = penguins)

summary(mdl)

Call:
lm(formula = bill_length_mm ~ flipper_length_mm + bill_depth_mm,

data = penguins)
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Residuals:
Min 1Q Median 3Q Max

-10.8831 -2.7734 -0.3268 2.3128 19.7630

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.14701 5.51435 -5.104 5.54e-07 ***
flipper_length_mm 0.30569 0.01902 16.073 < 2e-16 ***
bill_depth_mm 0.62103 0.13543 4.586 6.38e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.009 on 339 degrees of freedom
(2 observations deleted due to missingness)

Multiple R-squared: 0.4638, Adjusted R-squared: 0.4607
F-statistic: 146.6 on 2 and 339 DF, p-value: < 2.2e-16

We will notice that the linear regression summary returns two 𝑅2 values. The first one is
the traditional 𝑅2 and the other is the adjusted 𝑅2. The adjusted 𝑅2

adj applies a correction
factor since 𝑅2 it is often bias when there are more predictor variables and a smaller sample
size. If we want to know the contribution for each term in the regression model, we can also
use semi-partial 𝑠𝑟2 values that are similar to partial eta-squared in the ANOVA section of
this book. In R, we can calculate 𝑠𝑟2 with the r2_semipartial() function in the effectsize
package (Ben-Shachar, Lüdecke, and Makowski 2020):

library(effectsize)

r2_semipartial(mdl,alternative = "two.sided")

Term | sr2 | 95% CI
---------------------------------------
flipper_length_mm | 0.41 | [0.33, 0.49]
bill_depth_mm | 0.03 | [0.01, 0.06]

A standardized effect size for each term could also be calculated from standardizing the re-
gression coefficients. Standardized regression coefficients are calculated by re-scaling the
predictor and outcome variables to be z-scores (i.e., setting the mean and variance to be zero
and one, respectively).

stand_mdl <- lm(scale(bill_length_mm) ~ scale(flipper_length_mm) + scale(bill_depth_mm),
data = penguins)
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summary(stand_mdl)

Call:
lm(formula = scale(bill_length_mm) ~ scale(flipper_length_mm) +

scale(bill_depth_mm), data = penguins)

Residuals:
Min 1Q Median 3Q Max

-1.9934 -0.5080 -0.0599 0.4236 3.6199

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.328e-15 3.971e-02 0.000 1
scale(flipper_length_mm) 7.873e-01 4.899e-02 16.073 < 2e-16 ***
scale(bill_depth_mm) 2.246e-01 4.899e-02 4.586 6.38e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7344 on 339 degrees of freedom
(2 observations deleted due to missingness)

Multiple R-squared: 0.4638, Adjusted R-squared: 0.4607
F-statistic: 146.6 on 2 and 339 DF, p-value: < 2.2e-16

Alternatively, we can use the standardise function in the effectsize package:

standardise(mdl)

Call:
lm(formula = bill_length_mm ~ flipper_length_mm + bill_depth_mm,

data = data_std)

Coefficients:
(Intercept) flipper_length_mm bill_depth_mm

4.335e-16 7.873e-01 2.246e-01
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13.3 Pearson correlation vs regression coefficients in simple linear
regressions

A slope coefficient in a simple linear regression model can be defined as the covariance be-
tween predictor 𝑥 and outcome 𝑦 divided by the variance in 𝑥,

𝑏1 = Cov(𝑥, 𝑦)
𝑆2𝑥

Where 𝑆𝑥 is the standard deviation of 𝑥 (the square of the standard deviation is the variance).
A Pearson correlation is defined as,

𝑟 = Cov(𝑥, 𝑦)
𝑆𝑥𝑆𝑦

We can see that these formulas are quite similar, in fact we can express 𝑟 as a function of 𝑏1
such that,

𝑟 = 𝑏1
𝑆𝑥
𝑆𝑦

(13.4)

Which means that if 𝑆𝑥 = 𝑆𝑦 then 𝑟 = 𝑏1. Furthermore, if the regression coefficient is
standardized this would make the outcome and predictor variable to both have a variance of
1, thus making 𝑆𝑥 = 𝑆𝑦 = 1. Therefore a standardized regression coefficient is equal to a
pearson correlation.

13.4 Multi-Level Regression models

We can allow the regression coefficients such as the intercept and slope to vary randomly
with respect to some grouping variable. For example, lets say we think that the intercept will
vary between the different species of penguins when we look at the relationship between body
mass and bill length. Using the lme4 package in R, we can construct a model that allows the
intercept coefficient to vary between species.

library(palmerpenguins)
library(lme4)
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ml_mdl <- lmer(bill_length_mm ~ 1 + flipper_length_mm + (1 | species),
data = penguins)

summary(ml_mdl)

Linear mixed model fit by REML ['lmerMod']
Formula: bill_length_mm ~ 1 + flipper_length_mm + (1 | species)

Data: penguins

REML criterion at convergence: 1640.6

Scaled residuals:
Min 1Q Median 3Q Max

-2.5568 -0.6666 0.0109 0.7020 4.7678

Random effects:
Groups Name Variance Std.Dev.
species (Intercept) 20.06 4.479
Residual 6.74 2.596
Number of obs: 342, groups: species, 3

Fixed effects:
Estimate Std. Error t value

(Intercept) 1.81165 4.97514 0.364
flipper_length_mm 0.21507 0.02113 10.177

Correlation of Fixed Effects:
(Intr)

flppr_lngt_ -0.854

Note in the table that we have random effects and fixed effects. The random effects shows
the grouping (categorical) variable that the parameter is allowed to vary on and then it shows
the parameter that is varying, which in our case is the intercept coefficient. It also includes the
variance of the intercept, which is the extent to which the intercept varies between species.
For the fixed effect terms, we see the intercept displayed as well as the slope, this shows the
mean of the intercept across species and, since the slope is equal across species, the slope
is just a single value. Let’s visualize how this model looks:
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Notice that in the plot above the slopes are fixed and equal between each species and only
the intercepts (i.e., the vertical height of each line) differs. We can also allow the slope to vary
if we may choose by editing the formula:

library(palmerpenguins)
library(lme4)

ml_mdl <- lmer(bill_length_mm ~ 1 + flipper_length_mm + (1 + flipper_length_mm | species),
data = penguins)

summary(ml_mdl)

Linear mixed model fit by REML ['lmerMod']
Formula: bill_length_mm ~ 1 + flipper_length_mm + (1 + flipper_length_mm |

species)
Data: penguins

REML criterion at convergence: 1638.2

Scaled residuals:
Min 1Q Median 3Q Max

-2.6326 -0.6657 0.0083 0.6843 4.9531
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Random effects:
Groups Name Variance Std.Dev. Corr
species (Intercept) 3.0062118 1.73384

flipper_length_mm 0.0007402 0.02721 -0.61
Residual 6.6886861 2.58625
Number of obs: 342, groups: species, 3

Fixed effects:
Estimate Std. Error t value

(Intercept) 1.56035 4.32870 0.360
flipper_length_mm 0.21609 0.02623 8.237

Correlation of Fixed Effects:
(Intr)

flppr_lngt_ -0.863
optimizer (nloptwrap) convergence code: 0 (OK)
unable to evaluate scaled gradient
Model failed to converge: degenerate Hessian with 1 negative eigenvalues

Varying the slope will include flipper_length_mm in the random effects terms. Also note that
the summary returns the correlation between random effect terms, which may be useful to
know if there is a strong relationship between the intercept and slope across species. Now
we see that the random effects terms now include the slope coefficient corresponding to the
flipper_length_mm predictor variable. Let’s visualize
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The plot above shows slight variation in the slope between the three species, however the
slope does not vary all that much. For multi-level models we can compute a conditional 𝑅2
and a marginal 𝑅2 which are each described below

• Marginal 𝑅2: the variance explained solely by the fixed effects
• Conditional 𝑅2: the variance explained in the whole model, including both the fixed
effects and random effects terms.

In R, we can use the MuMIn package (Bartoń 2023) to compute both the marginal and condi-
tional 𝑅2:

library(MuMIn)

r.squaredGLMM(ml_mdl)

R2m R2c
[1,] 0.2470201 0.8210591
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14 Artifacts and Bias in Effect Sizes

14.1 Resources

Effect size estimates such as correlation coefficients and Cohen’s 𝑑 values can be severely
biased due to various statistical artifacts such as measurement error and selection effects
(e.g., range restriction). Methods have been developed to correct for the bias in effect sizes
and thus these corrections are called “artifact corrections”. Artifact correction formulas can be
complex and therefore readers are referred to other resources listed below:

• Jané (2023) : An open-access textbook that contains equations and R code for various
types of artifact corrections. Not yet released.

• Hunter and Schmidt (1990) : Classic textbook on the topic of artifact corrections. Hunter
and Schmidt pioneered the methodology for artifact correction style meta-analyses.

• Wiernik and Dahlke (2020) : A paper that serves as a condensed version of Hunter and
Schmidt’s book. It contains most of the equations necessary to correct effect sizes.

• Dahlke and Wiernik (2019) : An R package for conducting artifact correction meta-
analyses. Contains all the functions one would need to correct effect sizes for artifacts
in R.

14.2 Correcting for Measurement Error

If we have reliability estimates of the variables of interest, we can correct a Pearson correla-
tion or a standardized mean difference (Cohen’s 𝑑) for measurement error. Non-differential
measurement error attenuates Pearson correlations and Cohen’s 𝑑 therefore we can apply
correction factors to adjust for this bias. For a pearson correlation, we can use the correction
for attenuation first developed by Spearman (1904),

𝑟𝑐 = 𝑟obs√𝑟𝑥𝑥′𝑟𝑦𝑦′
(14.1)

where 𝑟𝑐 is the corrected correlation, 𝑟obs is the observed correlation, 𝑟𝑥𝑥′ is the reliability of
𝑥, and 𝑟𝑦𝑦′ is the reliability of 𝑦. reliability coefficients can be estimated a number of different
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ways however the two of the most common estimators is Cronbach Alpha and Test-retest
reliability. Alpha measures the internal consistency of a set of sub-component measurements
(e.g., question responses on a questionnaire) while test-retest reliability measures the stability
over time.

A Cohen’s 𝑑 can be corrected similarly to a correlation coefficient, however since it only has
one continuous variable we can just correct for reliability in the continuous variable

𝑑𝑐 = 𝑑obs√𝑟𝑦𝑦′

However in the case of a Cohen’s d, it is important that 𝑟𝑦𝑦′ is the pooled within-group reli-
ability (calculate pooled reliability the same way you calculate the pooled standard deviation
for denominator of Cohen’s 𝑑). If all you have is the total sample reliability (more commonly
reported) you can follow this three step process (Wiernik and Dahlke 2020),

1. Convert the d value to a point-biserial correlation (see section on conversions)
2. Correct the point-biserial correlation using Equation 14.1 (setting 𝑟𝑥𝑥′ = 1)
3. Convert it back to a Cohen’s 𝑑

Note that confidence intervals for 𝑟𝑐 and 𝑑𝑐 must also be corrected. For example, a pearson
correlation would need to be corrected such that,

𝐶𝐼𝑟𝑐
= [ 𝑟lower-bound√𝑟𝑥𝑥′𝑟𝑦𝑦′

, 𝑟upper-bound√𝑟𝑥𝑥′𝑟𝑦𝑦′
]

14.3 Correcting for Range Restriction

Range restriction corrections can be quite complex depending on the selection process. The
process for correcting Pearson correlations and Cohen’s 𝑑 for range restriction is laid out in
table 3 of Wiernik and Dahlke (2020).
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Part II

Converting Between Effect Sizes
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15 Converting to Cohen’s 𝑑
15.1 From Independent Samples 𝑡-statistic

To calculate a between subject standardized mean difference (𝑑𝑝, i.e., pooled standard de-
viation standardizer), we can use the sample size in each group (𝑛1 and 𝑛2) as well as the𝑡-statistic from an independent sample t-test and plug it into the following formula:

𝑑𝑝 = 𝑡√ 1
𝑛1

+ 1
𝑛2

(15.1)

Using the t_to_d function in the effectsize package we can convert 𝑡 to 𝑑𝑝.

# Example:
# unpaired t-statistic = 3.25
# n1 = 50, n2 = 40

library(effectsize)

t <- 3.25
n1 <- 50
n2 <- 40

t_to_d(t, df_error = n1+n2-2, paired = FALSE)

d | 95% CI
-------------------
0.69 | [0.26, 1.12]
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15.2 From Paired Sample 𝑡-statistic

To calculate a within-subject standardized mean difference (𝑑𝑧, i.e., difference score standard-
izer), we can use the sample size in each group (𝑛1 and 𝑛2) as well as the 𝑡-statistic from an
paired sample t-test and plug it into the following formula:

𝑑𝑧 = 𝑡√𝑛 (15.2)

Using the t_to_d function in the effectsize package we can convert 𝑡 to 𝑑𝑧.

# Example:
# paired t-statistic = 3.25
# n = 50

t <- 3.25
n <- 50

t_to_d(t, df_error = n-1, paired = TRUE)

d | 95% CI
-------------------
0.46 | [0.17, 0.76]

15.3 From Pearson Correlation

If a Pearson correlation is calculated between a continuous score and a dichotomous score,
this is considered a point-biserial correlation. The point-biserial correlation can be converted
into a 𝑑𝑝 value using the following formula:

𝑑𝑝 = 𝑟√
1 − 𝑟2

√𝑛1 + 𝑛2 − 2
𝑛1

+ 𝑛1 + 𝑛2 − 2
𝑛2

(15.3)

Or if sample sizes within each group are unknown (or equal), the equation simplifies to be
approximately,

𝑑𝑝 ≈ 𝑟
√

4√
1 − 𝑟2 (15.4)
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Using the r_to_d function in the effectsize package we can convert 𝑟 to 𝑑𝑝.

# Example:
# r = 3.25
# n1 = 50, n2 = 40

r <- .50
n1 <- 50
n2 <- 40

r_to_d(r = r, n1 = n1, n2 = n2)

[1] 1.148913

15.4 From Odds-Ratio

An odds-ratio from a contingency table can also be converted to a 𝑑𝑝. Note that this formula
is an approximation:

𝑑𝑝 = log(𝑂𝑅)
√

3
𝜋 (15.5)

Using the oddsratio_to_d function in the effectsize package we can convert 𝑂𝑅 to 𝑑𝑝.

# Example:
# OR = 1.46

OR <- 1.46

oddsratio_to_d(OR = OR)

[1] 0.2086429

129



16 Converting to Pearson Correlation

16.1 From 𝑡-statistic

From a 𝑡 statistic calculated from a correlational test, we can calculate the correlation coeffi-
cient using the following formula:

𝑟 = √ 𝑡2

𝑡2 + 𝑛 − 2 (16.1)

Using the t_to_r function in the effectsize package we can convert 𝑡 to 𝑟.
# Example:
# t = 4.14, n = 50

library(effectsize)

t <- 4.14
n <- 50

t_to_r(t = t, df = n-2)

r | 95% CI
-------------------
0.51 | [0.28, 0.67]

16.2 From Cohen’s 𝑑
From a between groups Cohen’s 𝑑 value (𝑑𝑝), we can calculate the correlation coefficient
from the following formula:
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𝑟 = 𝑑𝑝

√𝑑2𝑝 + 𝑛1+𝑛2−2
𝑛1

+ 𝑛1+𝑛2−2
𝑛2

(16.2)

Using the d_to_r function in the effectsize package we can convert 𝑑𝑝 to 𝑟.

# Example:
# d = 0.60, n1 = 50, n2 = 70

d <- 0.60
n1 <- 50
n2 <- 70

d_to_r(d = d, n1 = n1, n2 = n2)

[1] 0.2858532

16.3 From Odds-Ratio

The correlation coefficient from an odds ratio can be calculated with the following formula:

𝑟 = log(𝑂𝑅) ×
√

3
𝜋√3 log(𝑂𝑅)2

𝜋2 + 𝑛1+𝑛2−2
𝑛1

+ 𝑛1+𝑛2−2
𝑛2

(16.3)

Using the oddsratio_to_r function in the effectsize package we can convert 𝑂𝑅 to 𝑟.
# Example:
# OR = 2.21, n1 = 50, n2 = 70

OR <- 2.21
n1 <- 50
n2 <- 70

oddsratio_to_r(OR=OR, n1 = n1, n2 = n2)

[1] 0.2124017
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17 Converting to Odds Ratio

17.1 From Cohen’s 𝑑
We can calculate an odds-ratio from a between groups cohen’s 𝑑 (𝑑𝑝):

𝑂𝑅 = exp(𝑑𝑝𝜋√
3 ) (17.1)

Where exp(⋅) is an exponential transformation (this inverses the logarithm). Using the
d_to_oddsratio function in the effectsize package we can convert 𝑑 to 𝑂𝑅.

# Example:
# d = 0.60, n1 = 50, n2 = 70

library(effectsize)

d <- 0.60
n1 <- 50
n2 <- 70

d_to_oddsratio(d = d, n1 = n1, n2 = n2)

[1] 2.969162

17.2 From a Pearson Correlation

We can calculate an odds ratio from a Pearson correlation using the following formula:

𝑂𝑅 = exp⎛⎜⎜
⎝

𝑟𝜋√𝑛1+𝑛2−2
𝑛1

+ 𝑛1+𝑛2−2
𝑛2

√3(1 − 𝑟2)
⎞⎟⎟
⎠

(17.2)
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When sample sizes are equal, this equation can be simplified to be approximately,

𝑂𝑅 = exp( 𝑟𝜋
√

4
√3(1 − 𝑟2)

) (17.3)

Using the r_to_oddsratio function in the effectsize package we can convert 𝑑 to 𝑂𝑅.

# Example:
# r = .50, n1 = 50, n2 = 70

r <- .40
n1 <- 50
n2 <- 70

r_to_oddsratio(r = r, n1 = n1, n2 = n2)

[1] 4.870584
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Part III

Conclusion
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18 Conclusion

18.1 Limitations and Future Directions

While this guide covers a wide range of effect size and confidence interval methods, there are
some limitations to note. First, our instructions focus specifically on applications in behavioral,
cognitive, and social science research. The techniques may need to be adapted for other sci-
entific domains. Second, we only cover free and open source options, so proprietary software
packages are not discussed. Finally, as new methods and R packages arise, the guide will
need to be continually updated, perhaps in a similar manner as Parsons et al. (2022) Open
Scholarship terms after publication.

In the future, we aim to expand the guide by collaborating with experts in other fields to in-
clude discipline-specific recommendations. We also plan to incorporate new R packages and
techniques as they emerge. Readers are encouraged to consult the cited packages’ docu-
mentation and peer-reviewed sources to further explore limitations and assumptions of the
covered techniques.

18.2 Conclusion

Robust quantification of study results is a central pillar of open and reproducible science. With
this collaborative collection of applied instructions, our guide aims to make calculating effect
sizes and confidence intervals more accessible. We hope these resources empower both
young researchers and experienced scholars across a variety of disciplines to incorporate
these crucial statistical practices into their workflows. In our view, more widespread and
thoughtful adoption of these methods will greatly strengthen the collective rigor, transparency,
and impact of scientific research.
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