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Abstract

Repeated measures designs are prevalent across various scientific disciplines and have become a

frequent subject of meta-analytic syntheses. An essential parameter to calculate effect-sizes for

repeated measures designs is the correlation between pre and post intervention scores. Despite

this, pre-post correlations are frequently unreported in primary studies. As a result of the lack of

awareness of alternative methods for calculating pre-post correlations, meta-analysts often resort

to the use of fixed values (e.g., 𝑟 = .50) to replace unavailable pre-post correlations. As you would

expect, innacurate pre-post correlations will lead to innacurate results, highlighting the need for a

systematic procedure for empirically estimating pre-post correlations. The purpose of this paper is

to present the necessary equations and code for various scenarios where different information may

be available.
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Extracting Pre-Post Correlations for Meta-Analyses of Repeated Measures Designs

Introduction

Meta-analyses synthesizing studies using repeated measures designs are popular for

drawing inferences about within-person effects over time or across conditions. While these

meta-analyses are capable of providing insight into within-participant effects, when conducted

improperly they can lead to biased results (Cuijpers et al., 2017). Specifically, repeated-measures

standardized mean differences (rmSMDs) tend to rely on pre-post correlations in their calculation

(Table 1). However, these pre-post correlations are usually unavailable, leading meta-analysts to

make inaccurate calculations. Some authors have gone so far as to recommend against the use of

rmSMDs altogether (Cuijpers et al., 2017, p. 364):

We conclude that pre-post SMDs should be avoided in meta-analyses as using them

probably results in biased outcomes.

Despite this cautionary stance, we advocate for a more nuanced approach. Numerous

statistical methods are available to calculate pre-post correlations directly from alternative

statistics, mitigating the risk of bias. Therefore, we believe that dismissing rmSMDs entirely may

be an overly hasty response. Instead, we believe that this dilemma stems largely from the lack of

clarity on when and how to use alternative statistics when calculating pre/post correlations for

rmSMDs. Here we aim to establish a concise guide for calculating pre/post correlations

depending on the available statistics (see Figure 1).

Defining the pre-post correlation

As we will see in the next section, pre-post correlations are present in the equations for

rmSMDs. The pre-post correlation measures the stability of individual differences from pre to

post intervention (see Figure 2). The population pre-post correlation is defined as the covariance

(𝜎01 := cov(𝑌0, 𝑌1)) between pre (𝑌0) and post (𝑌1) intervention scores divided by the product of

the standard deviations of pre (𝜎0 :=
√

var(𝑌0)) and post (𝜎1 :=
√

var(𝑌1)) intervention scores

scores such that,
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Figure 1

Decision tree-like diagram of pre-post calculation procedure. Denoted at the bottom with a

circular node is the quantity of interest (i.e., the pre/post correlation). To follow the diagram, start

at the upper-most node. Each node asks whether a specific type of information is available. If the

information is not available, then move on to the next scenario, if the information is available, you

will be able to estimate the pre/post correlation.
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𝜌 =
𝜎01
𝜎0𝜎1

. (1)

Within a sample, we can compute the Pearson’s product-moment estimator (Pearson &

Filon, 1897), which replaces the population values with the sample covariance (𝑠01) and standard

deviations (𝑠0 and 𝑠1),

𝑟 =
𝑠01
𝑠0𝑠1

(2)

Worked Example in R.. Throughout the paper, we will use example data from the

psychTools package (William Revelle, 2024). This data set contains affect related scores of four

groups at two time points. The four groups watched different films and then self-reported there

affective states before and after their respective films. For this example, we will look at the

difference in tense arousal scores before and after watching a horror movie. We can first load in

the psychTools and tidyverse package (Wickham et al., 2019; William Revelle, 2024).

library(psychTools)

library(tidyverse)

After loading in the packages, we can then import the dataset, select for the necessary

variables (i.e., tense arousal scores at pre TA1 and post TA2 as well as the film type Film), and

filter out the films that are not of interest (i.e., all non-horror films). This results in a dataset of just

the pre and post tense arousal scores for the horror movie condition only (first ten subjects of the

dataset are displayed below).

pre post

1 11 15

2 5 6

3 8 19
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Figure 2

Visualizing pre-post correlations with simulated data. Top row shows the pre-post change in

scores for low (left) and high (right) correlations. Bottom row shows corresponding scatter plots

for low (left) and high (right) pre-post correlations
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4 8 17

5 12 22

6 10 25

7 15 19

8 13 15

9 7 17

10 12 20

The correlation between pre-test and post-test scores is then simply calculated using the

cor function in base R.

cor(dat$pre,dat$post)

[1] 0.4627346

Therefore the correlation we will be estimating throughout the applied examples in this

paper is 𝑟 = 0.46. The pre-post correlation can be visualized by plotting out the pre intervention

scores on the horizontal axis and the post intervention scores on the vertical axis.

# initialize ggplot object

ggplot(data = dat, aes(x = pre, y = post)) +

# plot data points

geom_point() +

# set theme

theme_bw(base_size=15) +

# make axes square

theme(aspect.ratio = 1) +

# reference line

geom_abline(intercept = 0, slope = 1, linetype = "dashed") +
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# set x and y limits

lims(x=c(5,33), y=c(5,33))

Figure 3

Scatter plot displaying pre-post correlation. Reference line (dashed diagonal line) denotes

equality between pre and post scores

10

20
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10 20 30
pre

po
st
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Repeated Measures Standardized Mean Differences

Repeated Measures Standardized Mean Differences (rmSMDs) quantify the change in an

outcome from pre to post intervention. There are various formulations of rmSMD (see Table 1)

however they follow a similar algebraic expression. That is, the difference in the population post

intervention mean (𝜇1) and the population pre intervention mean (𝜇0) divided by some

standardizer (𝜎∗),

𝛿∗ =
𝜇1 − 𝜇0

𝜎∗
.

A sample estimator can be expressed similarly,

𝑑∗ =
𝑚1 − 𝑚0

𝑠∗
,

where 𝑚0 and 𝑚1 are the sample means for the pre and post intervention scores,

respectively. The standardizer (𝑠∗) will be some type of standard deviation (e.g., standard

deviation of change scores; see Table 1).

Table 1

Equations for the standardizer and sampling variance for different types of rmSMDs obtained

from Jané et al. (2024). Note 𝑠0 = pre intervention standard deviation, 𝑠1 = post intervention

standard deviation, 𝑟 = pre-post correlation, 𝑛 = sample size.

Estimator Standardizer (𝑠∗) Variance

Change score 𝑑𝑧

√
𝑠2
0 + 𝑠2

1 − 2𝑟𝑠0𝑠1
1
𝑛 +

𝑑2
𝑧

2𝑛

Repeated Measures 𝑑𝑟𝑚

√
𝑠2
0+𝑠

2
1−2𝑟𝑠0𝑠1

2(1−𝑟)

(
1
𝑛 +

𝑑2
𝑟𝑚

2𝑛

)
× 2(1 − 𝑟)

Average Variance 𝑑𝑎𝑣

√
𝑠2
0+𝑠

2
1

2
2(𝑠2

0+𝑠
2
1+2𝑟𝑠0𝑠1)

𝑛(𝑠2
0+𝑠

2
1)

Baseline score 𝑑𝑏 𝑠0
2(1−𝑟)

𝑛 + 𝑑2
𝑏

2𝑛

To decide on one of the four types of rmSMDs described in Table 1, one may want to

consider a standardizer that does not contain the pre-post correlation (i.e., average variance 𝑑𝑎𝑣 or
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baseline score 𝑑𝑏). This is due to the fact that changing the pre-post correlation can result in

substantial changes to the rmSMD value even if there is no change in the raw mean difference (see

Figure 4). For instance, the change score variant of the rmSMD (𝑑𝑧) is highly influenced by the

pre-post correlation even when the mean difference and variances are fixed (see first panel of

Figure 4). On the other hand, like the change score variant of the rmSMD, the repeated measures

variant (𝑑𝑟𝑚) contains the pre-post correlation in the standardizer (see Table 1). However, the

pre-post correlation only has substantial influence on the value of 𝑑𝑟𝑚 if the variances are unequal

between pre and post intervention (see Figure 5).

Even if the pre-post correlation is not contained in the standardizer, it will be utilized in

the sampling variance formula (see Table 1). Therefore, proper calculation of the rmSMD and it’s

variance always requires the pre-post correlation.

Obtaining Pre/Post Correlations

Depending on what information is available to the meta-analyst the procedure for

obtaining pre-post correlations varies. Here, we present a systematic procedure for calculating

pre-post correlations. This procedure accounts for the differences in available information that a

meta-analyst may come across in their literature review. Using a decision tree-like procedure (see

Figure 1), we can prioritize exact methods of obtaining pre-post correlations rather than

approximations, which become a last resort if all other information is unavailable. Each step in

the diagram in Figure 1 will have a dedicated section in this paper overviewing the method given

the available information.

Pre-post correlation calculation scenarios

Obtaining pre and post intervention means and standard deviations

For many of the following scenarios, calculations of the pre and post intervention mean

and standard deviation will be required. While this is not always directly reported in primary

studies, several common situations occur in which the mean and standard deviation can be

obtained: 1) standard errors of the mean are reported instead of standard deviations, 2) confidence

intervals of the mean are reported instead of standard deviations, 3) boxplots or five-point
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Figure 4

Repeated measures SMDs as a function of the pre-post correlation while varying the raw mean

differences and fixing the standard deviations. The equal variance condition fixes the standard

deviations in pre and post intervention to be one (𝜎0 = 𝜎1 = 1).
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Figure 5

Repeated measures SMDs as a function of the pre-post correlation while varying the raw mean

differences and fixing the standard deviations. The unequal variance condition sets different

values for the standard deviations in pre (𝜎0 = 0.8) and post intervention (𝜎1 = 1.2).
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summaries are reported instead of means and standard deviations, 4) inter-quartile range and

medians are reported instead of means and standard deviations 5) the min-max range is reported

instead of standard deviations.

Standard errors to standard deviations. Standard deviations are calculable from the

standard error of the mean (se(𝑚)) by multiplying the standard error by the square root of the

sample size (𝑛),

𝑠 = se(𝑚) ×
√
𝑛, (3)

where 𝑠𝑒(𝑚) is the standard error of the mean. It is pertinent to note that some primary

studies may misreport standard deviations as standard errors and vice versa, so it is important to

cross-check with other statistics (e.g., t-statistics).

Confidence intervals to standard deviations. The confidence interval (CI) of the sample

mean can be converted to a standard deviation by taking the range of the confidence interval

(𝐶𝐼𝑈 − 𝐶𝐼𝐿 , where the subscripts 𝑈 and 𝐿 denote the upper and lower bound) and first converting

to a standard error. This is done by dividing the difference by the upper and lower CI by a factor

containing the quantile function of the normal distribution and the false alarm rate (𝛼). This

results in a standard error which can be multiplied by the square root of the sample size to obtain

the standard deviation,

𝑠 =
𝐶𝐼𝑈 − 𝐶𝐼𝐿

2Φ−1 (1 − 𝛼
2
)︸          ︷︷          ︸

se(𝑚)

×
√
𝑛. (4)

Where Φ−1(·) is the inverse of the cumulative distribution function of the standard normal

distribution (in R, the qnorm() function is equivalent).

Boxplots and five-number summaries to means and standard deviations. If studies

report distributions as a five-number summary (often displayed as a boxplot) with a minimum

(min(𝑌 )), 25th percentile (𝑞1), median (𝑞2; i.e., 50th percentile), 75th percentile (𝑞3), and

maximum (max(𝑌 )) we can use these values to approximate the mean and standard deviation
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assuming an underlying normal distribution. To approximate the mean, we can use the following

formula (Luo et al., 2018, eq. 15),

𝑚 ≈
(

2.2
2.2 + 𝑛.75

)
min(𝑌 ) + max(𝑌 )

2

+
(
.7 − .72

𝑛.55

)
𝑞1 + 𝑞3

2

+
(
.3 + .72

𝑛.55 − 2.2
2.2 + 𝑛.75

)
𝑞2.

(5)

To approximate the standard deviation we can use the following formula (Shi et al., 2020,

eq. 15),

𝑠 ≈
(

1
1 + .07𝑛.6

)
max(𝑌 ) − min(𝑌 )

2Φ−1
(
𝑛−.375
𝑛+.25

)
+

(
.07𝑛.6

1 + .07𝑛.6

)
𝑞3 − 𝑞1

2Φ−1
(
.75𝑛−.125
𝑛+.25

) . (6)

Although these formulas are quite complex, the conv.fivenum() function in the

metafor R package (Viechtbauer, 2010) can conduct these calculations easily.

Inter-quartile interval and median to means and standard deviations. If the author

only reports the inter-quartile range (i.e., [𝑞1, 𝑞3]) rather than the five number summary, we use a

different mean and standard deviation approximation using the following formulas (Wan et al.,

2014, eq. 11 and 16, respectively).,

𝑚 ≈
(
.7 + .39

𝑛

)
𝑞3 + 𝑞1

2
+

(
.3 − .39

𝑛

)
𝑞2

𝑠 ≈ 𝑞3 − 𝑞2

2Φ−1
[
.75𝑛−.125
𝑛+.25

]
The R function as mentioned before,conv.fivenum(), can calculate the mean and

standard deviation from the sample size and the 25th, 50th (median), and 75th percentiles.

Min-max interval to means and standard deviations. If the full five-number summary

is not reported and instead the primary study only reports the min-max interval (i.e.,
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[min(𝑌 ),max(𝑌 )]) then we can calculate a different approximation for the mean and standard

deviation (Luo et al., 2018, eq. 7; Wan et al., 2014, eq. 7)

𝑚 ≈
(

4
4 + 𝑛.75

)
max(𝑌 ) + min(𝑌 )

2
+

(
𝑛.75

4 + 𝑛.75

)
𝑞2

𝑠 ≈ max(𝑌 ) − min(𝑌 )
2Φ−1

[
𝑛−.375
𝑛+.25

]
The conv.fivenum() R function also has the ability to calculate the mean and standard

deviation only from the sample size, minimum, maximum, and median.

Scenario 0: The pre/post correlation or raw data is reported.

This is the ideal scenario where the pre/post Pearson correlation is reported in the primary

study or the raw data is available. If the correlation is not reported, but the raw data is available

then we will have to calculate the pre/post correlation ourselves. This can be done easily in base R

using the cor() function. If neither the raw data or Pearson correlation is available, contact the

authors of the primary study to obtain the raw data.

Scenario 1: Is the change score standard deviation available?

Change scores (also known as gain scores or difference scores) are used to quantify the

within subject change from pre to post intervention. They are simply the difference between a

subject’s post intervention score and pre intervention score (𝑌𝑐 = 𝑌1 − 𝑌0). If the study reports the

standard deviation of change scores, then we can calculate the pre/post correlation with the

following formula,

𝑟 =
𝑠2
0 + 𝑠2

1 − 𝑠2
𝑐

2𝑠0𝑠1
(7)

Where 𝑠𝑐 is the standard deviation of change scores. The derivation for Equation 7 can be found

for Section . If the change score standard deviation is not reported, move on to Scenario 2.

Worked example in R.. Let’s say a study reports the following summary statistic table

containing the means and standard deviations for pre-test, post-test, and change scores for the
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tense arousal scale before and after watching a horror film (Table 3).

Table 3

Reported statistics for tense arousal scores
Time Mean SD

Pre 12.62 3.84

Post 18.33 5.15

Change -5.71 4.8

We can then use the formula in Equation 7 to compute the correlation exactly (within

rounding error),

sd_pre <- 3.84

sd_post <- 5.15

sd_change <- 4.8

r <- (sd_pre^2 + sd_post^2 - sd_change^2) / (2*sd_pre*sd_post)

r

[1] 0.4608642

The correlation (almost) exactly matches the true value, however it is worth noting that the

reported statistics will round to some decimal place so we will observe a some slight difference

between the calculated pre-post correlation value (𝑟 = 0.461) and the actual value (𝑟 = 0.463).

Scenario 2: Is the change score rmSMD available?

The change score rmSMD (𝑑𝑧) is the mean change (𝑚𝑐 = 𝑚2 − 𝑚1) between pre and post

intervention scores divided by the change score standard deviation (𝑠𝑐; see the first estimator in

Table 1). Using the change score rmSMD we can compute the pre-post correlation with the

following formula,
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𝑟 =
𝑠2
0 + 𝑠2

1 −
(
𝑚𝑐

𝑑𝑧

)2

2𝑠0𝑠1
. (8)

For the derivation of this equation see Section . If the change score rmSMD is not

available, move on to scenario 3.

Worked example in R.. Let’s say a study reports the following table in the results section

containing the means and standard deviations for pre-test, post-test, and rmSMD (𝑑𝑧) for the tense

arousal scale before and after watching a horror film (Table 3).

Table 4

Reported results for horror film effect on tense arousal scores
Pre.Mean Pre.SD Post.Mean Post.SD dz

12.62 3.845 18.33 5.155 1.191

In R, we can use the values from this table to compute the pre-post correlation from the

formula described in Equation 8,

mean_pre <- 12.62

sd_pre <- 3.845

mean_post <- 18.33

sd_post <- 5.155

dz <- 1.191

r <- (sd_pre^2 + sd_post^2 - ((mean_post - mean_pre)/dz)^2) /

(2 * sd_pre * sd_post)

r

[1] 0.4634693

The calculated correlation (𝑟 = 0.463) precisely reflects the actual correlation (𝑟 = 0.463).
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Scenario 3: Is the t-statistic from a paired t-test available?

The paired t-statistic (𝑡) is the test statistic for the paired t-test. It is calculated by the ratio

of the mean change (𝑚𝑐 = 𝑚2 − 𝑚1) divided by the standard error of the mean of change scores

(𝑡 = 𝑚𝑐/se(𝑚𝑐)). If the study reports the t-statistic then we can calculate the pre-post correlation

with the following formula,

𝑟 =
𝑡2(𝑠2

0 + 𝑠2
1) − 𝑛 × 𝑚2

𝑐

2𝑡2𝑠0𝑠1
(9)

Note that the paired t-statistic is equal to the square root of an F-statistic from a one-way

ANOVA with two groups (𝑡 =
√
𝐹). For the derivation of Equation 9 see Section . If the t-statistic

is not available, move on to scenario 4.

Worked example in R.. Continuing with the example involving the effect of a horror film

on tense arousal scores, let’s suppose a study reports the following table (Table 5). The table

reports the t-statistic from a paired t-test along with the pre and post means and standard

deviations of tense arousal scores.

Table 5

Paired t-test results
Pre.Mean Pre.SD Post.Mean Post.SD t.val N

12.62 3.845 18.33 5.155 10.52 78

In R, we can use the formula from Equation 9 to compute the pre/post correlation.

pre_mean <- 12.62

pre_sd <- 3.845

post_mean <- 18.33

post_sd <- 5.155

paired_t <- 10.52

n <- 78
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r <- (paired_t^2*(sd_pre^2 + sd_post^2)-n*(post_mean-pre_mean)^2) /

(2*paired_t^2*sd_pre*sd_post)

r

[1] 0.4636207

The computed correlation (𝑟 = 0.464) is an precise calculation of the actual pre-post

correlation (𝑟 = 0.463).

Scenario 4: Is the p-value from a paired t-test reported?

Sometimes the paired t-statistic is not provided and instead the study reports the p-value

(𝑝) associated with the paired t-test. Using the inverse cumulative distribution function of the

Student’s t distribution (Φ−1
𝑡 (𝑞, 𝜈), where 𝑞 indicates the quantile and 𝜈 denotes the degrees of

freedom) we can compute the t-statistic and thus the pre-post correlation,

𝑟 =
Φ−1

𝑡 (𝑝/2, 𝑛 − 1)2 × (𝑠2
1 + 𝑠2

2) − 𝑛 × 𝑚2
𝑐

2Φ−1
𝑡 (𝑝/2, 𝑛 − 1)2 × 𝑠1𝑠2

(10)

See the derivation of this formula in Section . Similarly, a pre-post correlation can also be

obtained from a one-tailed t-test,

𝑟 =
Φ−1

𝑡 (𝑝, 𝑛 − 1)2 × (𝑠2
1 + 𝑠2

2) − 𝑛 × 𝑚2
𝑐

2Φ−1
𝑡 (𝑝, 𝑛 − 1)2 × 𝑠1𝑠2

If the p-value is not available, move on to scenario 5.

Worked example in R.. Let’s the following table was reported in the results section of a

study (see Table 6). This time, the study only reports the p-value from a two-tailed paired t-test.

Table 6

Study results of paired t-test between pre- and post-test mean tense arousal scores.
Pre.Mean Pre.SD Post.Mean Post.SD p.val N

12.62 3.845 18.33 5.155 1.5e-16 78
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Using Equation 10 we can compute the pre-post correlation.

pre_mean <- 12.62

pre_sd <- 3.845

post_mean <- 18.33

post_sd <- 5.155

pval <- 1.5e-16 # from a paired t-test

n <- 78

# get paired t from p value

paired_t <- qt(pval/2, n-1, lower.tail = FALSE)

r <- (paired_t^2*(sd_pre^2 + sd_post^2)-n*(post_mean-pre_mean)^2) /

(2*paired_t^2*sd_pre*sd_post)

The computed correlation (𝑟 = 0.463) is an exact calculation of the actual pre-post

correlation (𝑟 = 0.463).

Scenario 5 (almost exact): Is a figure available with the necessary information?

Figures can convey a lot of information that goes unreported in the primary text. If a figure

contains the information needed to calculate the pre-post correlation, then meta-analysts can use

plot digitizers such as WebPlotDigitizer (Rohatgi, 2022) to extract the necessary data. If a figure

is not available, move on to scenario 6.

Scenario 6 (approximation): Is an alternative correlation coefficient available (i.e.,

Spearman’s or Kendall’s correlation)?

If the pre-post correlation is reported as a Spearman rank-order correlation, we can use the

Spearman correlation (𝑟s) to approximate the Pearson correlation assuming the data follows a

bivariate normal distribution (Rupinski & Dunlap, 1996, eq. 2),

𝑟 ≈ 2 sin−1
(𝜋 × 𝑟s

6

)
. (11)
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However, if the pre-post correlation is reported as a Kendall’s 𝜏 coefficient (𝑟𝜏), we can use

Kendall’s (1962) formula for converting to a Pearson correlation (assuming an underlying

bivariate normal distribution),

𝑟 ≈ sin−1
(𝜋 × 𝑟𝜏

2

)
. (12)

If both 𝑟s and 𝑟𝜏 are available, use the Spearman approximation formula in Equation 11 as we

show in Section the Kendall approximation and the midpoint of the two have slightly more

approximation error. If neither are available, move on to scenario 7.

Worked example in R.. Using the horror film example, let’s say a study reports the

pre-post correlation as a Spearman rank-order correlation (𝑟s = 0.39). Assuming an underlying

bivariate normal distribution, we can make a reasonable estimate of the Pearson pre-post

correlation simply by using Equation 11.

# approximation from spearman's correlation

spearman_r <- .39

r_approx <- 2*asin(pi*spearman_r/6)

r_approx

[1] 0.4113

As we can see from the code output, the resulting approximate Pearson pre-post

correlation turns out to be 0.41 which is very close to the actual value (0.46).

Simulation check: midpoint of Spearman and Kendall approximation. To assess

whether taking the midpoint of the two approximations performs better than either approximation

alone, we simulate bivariate normal data with a population correlation of .5 and see if the

midpoint of the Spearman and Kendall approximations (i.e., 𝑟 ≈ 1
2
[
2 sin−1 ( 𝜋×𝑟s

6
)
+ sin−1 ( 𝜋×𝑟𝜏

2
) ]

)

has lower error than both the Spearman (Equation 11) and Kendall (Equation 12) approximations

alone. Over 10,000 iterations, the absolute error was lowest in the Spearman approximation when

compared to both the Kendall approximation and the midpoint of both (see Table 7).
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Table 7

Simulation results
Mean Absolute Error

midpoint spearman kendall

0.05537 0.03888 0.07834

Scenario 7 (approximation): Is the standard deviation of response ratios available?

Sometimes primary studies report pre-post change as a ratio of post intervention scores to

pre intervention scores (𝑌ratio = 𝑌2/𝑌1). Since the variance of a ratio depends on the pre-post

correlation, we can use the variance of the response ratio to obtain the pre-post correlation. There

is no closed form solution to the standard deviation of a ratio (𝑠ratio), therefore an approximation

(via a Taylor series expansion) of the pre-post correlation is given below:

𝑟 ≈ −𝑚1𝑚2
2𝑠1𝑠2

(
𝑠2
ratio

𝑚2
1

𝑚2
2
−

𝑠2
1

𝑚2
1
−

𝑠2
2

𝑚2
2

)
. (13)

See the derivation of this formula in Section . If the standard deviation of the ratio is not

available then move on to Scenario 7.

Worked example in R.. Continuing with the anxiety example, imagine we are given the

table in Table 8.

Table 8

Reported means, SDs, and response ratios for pre/post effect
Time Mean SD

Pre-

test

12.6 3.84

Post-test 18.3 5.15

Ratio 1.5 0.54

Then we can use these values to calculate an approximation of the pre/post correlation.
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mean_pre <- 12.6

sd_pre <- 3.84

mean_post <- 18.3

sd_post <- 5.15

mean_ratio <- 1.50

sd_ratio <- .54

r <- -(mean_pre*mean_post)/(2*sd_pre*sd_post) *

((sd_ratio^2*mean_pre^2)/(mean_post^2) -

(sd_pre^2)/(mean_pre^2) -

(sd_post^2)/(mean_post^2))

r

[1] 0.197279

Note that this method is a rough approximation and may differ substantially from the

actual value of the pre/post correlation as we see here. The computed value (𝑟 = 0.197) differs

substantially than the actual value (𝑟 = 0.463).

Simulation check of approximation formula. The formula in Equation 13 comes from

solving for the correlation from the Taylor series approximation of the variance of a ratio by

Seltman (n.d.). This is a pdf found on a university website and is not peer-reviewed, therefore this

section will check the accuracy of the approximation.

For this simulation we will generate data from a bivariate normal distribution (pre

intervention mean = 100, post intervention mean = 101, pre intervention standard deviation = 1,

post intervention standard deviation = 1) with a sample size of 100 and evaluated at correlation

values of 0, .20, .40, .60, and .80. The approximation will be computed on 1,000 iterations at each

correlation value.

The results (visualized in Figure 6) of the simulation show that the sampling distribution is
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properly calibrated to the population correlation for each and every condition. The sampling

variances of the approximated correlations also were just slightly larger than what we would

expect (see Table 9)

Figure 6

Sampling distributions of approximate pre/post correlations from Equation 13 5 conditions with

varying population correlations.

Scenario 8 (approximation): Are there other similar studies with pre-post correlations?

If there is no usable information to calculate the pre-post correlation within the study of

interest, then we can use information from similar studies to make a reasonable approximation. If
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Table 9

Simulation results
Means Variance

Approximation Expected Approximation Expected

-0.0026 0 0.0106 0.01

0.2082 0.2 0.0087 0.0092

0.3962 0.4 0.0072 0.0071

0.5995 0.6 0.0044 0.0041

0.7974 0.8 0.0013 0.0013

we have pre-post correlations from 𝑘 studies, we can conduct a fixed effects meta-analysis to

calculate the average pre-post correlation and then use it as an estimate for the current study. The

correlation estimate can be obtained by following a three-step procedure: 1) transform the Pearson

correlations to Fisher’s Z correlations (i.e., hyperbolic arctangent transform), 2) compute a

inverse-variance weighted average of the available Fisher’s Z correlations, and 3) back-transform

the average Fisher’s Z correlation to a Pearson correlation. We can combine these three steps into

a single equation,

𝑟 ≈ 𝑟 = tanh

[∑𝑘
𝑖=1(𝑛𝑖 − 3) tanh−1(𝑟𝑖)∑𝑘

𝑖=1(𝑛𝑖 − 3)

]
,

where 𝑛𝑖 and 𝑟𝑖 are the sample size and correlation for study 𝑖, respectively. If there are no studies

that provide pre-post correlations, then move on to Scenario 8.

Example in R.. To compute the average correlation in R, we will need the sample sizes

and sample correlations from each study. For this example, we will suppose there are three studies

with correlations of .42, .61, and .33 with sample sizes 41, 18, and 34, respectively.
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sample_r <- c(.42,.61,.33) # sample correlations

n <- c(41, 18, 34) # sample sizes

# n-weighted averaged correlation

r <- tanh(sum((n-3)*atanh(sample_r)) / sum(n-3))

r

[1] 0.4265244

The mean correlation is estimated to be 𝑟 = 0.427 where the true correlation for that study

is 𝑟 = 0.463.

Scenario 9: No usable information available

In the worst case scenario where the current study and no other studies provide any

information on the pre-post correlations, we recommend using multiple values of the pre-post

correlation (e.g., 𝑟 = .25, .50, .75) and conduct sensitivity analyses. At this stage, it is important to

emphasize the use of rmSMDs that do not contain the pre-post correlation in their calculation

(i.e., 𝑑𝑎𝑣 and 𝑑𝑏). Although the sampling variance will still contain the pre-post correlation, we

can at least mitigate potential bias in the rmSMD estimates.

Conclusion

Conducting meta-analyses on repeated measures designs poses a common hurdle: the

scarce reporting of pre-post correlations. In response to this challenge, we have introduced a

series of equations designed to facilitate the extraction of pre-post correlations from alternative

statistical information. Each equation is created to align with distinct scenarios, accommodating

varying combinations of available statistics that meta-analysts may encounter.

These scenarios are systematically arranged from the most favorable, denoted as Scenario

0, to the least favorable, represented by Scenario 9. This structure helps to prioritize easier and
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exact conversions over approximations. It also serves as a practical guide for meta-analysts

seeking solutions when confronted with inconsistent statistical information.

Scenario 1: Derivation

Change scores denote the difference between a subject’s post and pre intervention scores

(𝑌𝑐 = 𝑌1 − 𝑌0). The variance of a change score (𝜎𝑐) is defined as,

𝜎2
𝑐 = 𝜎2

0 + 𝜎2
1 − 2𝜎01

The covariance between pre and post intervention scores (𝜎01) can be expressed in terms

of the pre-post correlation. Therefore, we can replace 𝜎01 with 𝜌01𝜎0𝜎1,

𝜎2
𝑐 = 𝜎2

0 + 𝜎2
1 − 2𝜌𝜎0𝜎1.

Solving for the pre-post correlation (𝜌) will give us the following equation,

𝜌 =
𝜎2

0 + 𝜎2
1 − 𝜎2

𝑐

2𝜎0𝜎1
. (14)

Thus the sample pre-post correlation is analogously defined as,

𝑟 =
𝑠2
0 + 𝑠2

1 − 𝑠2
𝑐

2𝑠0𝑠1

Scenario 2: Derivation

The change score rmSMD can be defined as the difference in means between pre and post

intervention scores or, equivalently, the mean of change scores (𝜇𝑐 = 𝜇1 − 𝜇0) divided by the

change score standard deviation (𝜎𝑐),

𝛿𝑧 =
𝜇1 − 𝜇0

𝜎𝑐
=

𝜇𝑐
𝜎𝑐

Solving for the change score standard deviation gives,

𝜎𝑐 =
𝜇1 − 𝜇0

𝛿𝑧
=

𝜇𝑐
𝛿𝑧

.
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This can then be plugged into Equation 14,

𝜌 =
𝜎2

0 + 𝜎2
1 − 𝜎2

𝑐

2𝜎0𝜎1
=
𝜎2

0 + 𝜎2
1 −

(
𝜇𝑐
𝛿𝑧

)2

2𝜎0𝜎1
.

Therefore the sample pre-post correlation can be calculated as,

𝑟 =
𝑠2
0 + 𝑠2

1 −
(
𝑚𝑐

𝑑𝑧

)2

2𝑠0𝑠1
.

Scenario 3: Derivation

The paired t-statistic can be expressed in terms of the change score standard deviation such

that,

𝑡 =
𝑚𝑐

se(𝑚𝑐)
=

𝑚𝑐(
𝑠𝑐√
𝑛

) =
𝑚𝑐 ×

√
𝑛

𝑠𝑐

Solving for the change score standard deviation gives,

𝑠𝑐 =
𝑚𝑐 ×

√
𝑛

𝑡

Plugging this into Equation 7 yields,

𝑟 =
𝑠2
0 + 𝑠2

1 − 𝑠2
𝑐

2𝑠0𝑠1
=
𝑠2
0 + 𝑠2

1 −
(
𝑚𝑐×

√
𝑛

𝑡

)2

2𝑠0𝑠1

Simplifying this gives,

𝑟 =
𝑡2(𝑠2

0 + 𝑠2
1) − 𝑛 × 𝑚2

𝑐

2𝑡2𝑠0𝑠1
(15)

Scenario 4: Derivation

The paired t-statistic for a two-tailed paired t-test can be calculated from a p-value by

using the inverse cumulative Student’s t distribution (Φ−1
𝑡 [𝑞, 𝜈], where 𝑞 is the quantile and 𝜈 is

the degrees of freedom),
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𝑡 = Φ−1
𝑡 [𝑝/2, 𝑛 − 1]

Plugging this into Equation 15 yields,

𝑟 =
𝑡2(𝑠2

0 + 𝑠2
1) − 𝑛 × 𝑚𝑐

2𝑡2𝑠0𝑠1
=
Φ−1

𝑡 [𝑝/2, 𝑛 − 1]2 × (𝑠2
0 + 𝑠2

1) − 𝑛 × 𝑚𝑐

2Φ−1
𝑡 [𝑝/2, 𝑛 − 1]2 × 𝑠0𝑠1

Scenario 6: Derivation

An approximation of the variance of a ratio between two random variables was derived by

Seltman (n.d.). For our case,

𝜎2
ratio ≈

𝜇2
1

𝜇2
0

(
𝜎2

0

𝜇2
0
+
𝜎2

1

𝜇2
1
− 2

𝜌𝜎0𝜎1
𝜇0𝜇1

)
We can then solve for the pre/post correlation,

𝜌 ≈ − 𝜇0𝜇1
2𝜎0𝜎1

(
𝜎2

ratio
𝜇2

0

𝜇2
1
−
𝜎2

0

𝜇2
0
−
𝜎2

1

𝜇2
1

)
For a sample, this can be written as,

𝑟 ≈ −𝑚0𝑚1
2𝑠0𝑠1

(
𝑠2
ratio

𝑚2
0

𝑚2
1
−

𝑠2
0

𝑚2
0
−

𝑠2
1

𝑚2
1

)
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