# Example:
# unpaired t-statistic = 3.25
# n1 = 50, n2 = 40
library(effectsize)
<- 3.25
t <- 50
n1 <- 40
n2
t_to_d(t, df_error = n1+n2-2, paired = FALSE)
d | 95% CI
-------------------
0.69 | [0.26, 1.12]
To calculate a between subject standardized mean difference (
Using the t_to_d
function in the effectsize
package we can convert
# Example:
# unpaired t-statistic = 3.25
# n1 = 50, n2 = 40
library(effectsize)
<- 3.25
t <- 50
n1 <- 40
n2
t_to_d(t, df_error = n1+n2-2, paired = FALSE)
d | 95% CI
-------------------
0.69 | [0.26, 1.12]
To calculate a within-subject standardized mean difference (
Using the t_to_d
function in the effectsize
package we can convert
# Example:
# paired t-statistic = 3.25
# n = 50
<- 3.25
t <- 50
n
t_to_d(t, df_error = n-1, paired = TRUE)
d | 95% CI
-------------------
0.46 | [0.17, 0.76]
If a Pearson correlation is calculated between a continuous score and a dichotomous score, this is considered a point-biserial correlation. The point-biserial correlation can be converted into a
Using the r_to_d
function in the effectsize
package we can convert
# Example:
# r = 3.25
# n1 = 50, n2 = 40
<- .50
r <- 50
n1 <- 40
n2
r_to_d(r = r, n1 = n1, n2 = n2)
[1] 1.148913
An odds-ratio from a contingency table can also be converted to a
Using the oddsratio_to_d
function in the effectsize
package we can convert
# Example:
# OR = 1.46
<- 1.46
OR
oddsratio_to_d(OR = OR)
[1] 0.2086429