collaboration, confidence interval, effect size, open educational resource, open scholarship, open science
16.1 From \(t\)-statistic
From a \(t\) statistic calculated from a correlational test or an independent samples t-test, we can calculate the correlation coefficient using,
\[
r = \frac{t}{\sqrt{t^2 + n-2}}.
\tag{16.1}\]
Where \(n\) is the sample size. Using the escalc() function in the metafor package (Viechtbauer 2010) we can convert \(t\) to \(r\) and we can convert the p-value from the test to \(r\).
library(metafor)# Example:# t = 4.14, n = 50# calculate correlation # note: measure = "ZCOR" will give z-transformed correlationsstats <-escalc(measure ="COR",ti =4.14,ni =50,var.names =c("r","variance"))# display resultssummary(stats)
r variance sei zi pval ci.lb ci.ub
1 0.5130 0.0111 0.1053 4.8728 <.0001 0.3066 0.7193
# Example:# p = .00014, n = 50# using the p-value from the teststats <-escalc(measure ="COR", pi = .00014, ni =50)# display resultssummary(stats)
yi vi sei zi pval ci.lb ci.ub
1 0.5129 0.0111 0.1053 4.8714 <.0001 0.3065 0.7192
16.2 From Cohen’s \(d\)
From a between groups (i.e., groups \(A\) and \(B\)) Cohen’s \(d\) value (\(d_p\)), we can calculate the correlation coefficient with the following formula:
\[
r = \frac{d_p}{\sqrt{d_p^2+\frac{n_A+n_B-2}{n_A} + \frac{n_A+n_B-2}{n_B}}}
\tag{16.2}\]
Using the d_to_r function in the effectsize package we can convert \(d_p\) to \(r\).
library(effectsize)# Example:# d = 0.60, nA = 50, nB = 70# calculate and display correlationd_to_r(d =0.60, n1 =50, n2 =70)
[1] 0.2858532
16.3 From Odds-Ratio
The correlation coefficient from an odds ratio can be calculated with the following formula:
\[
r = \frac{\log(OR)\times\sqrt{3}}{\pi\sqrt{\frac{3\log(OR)^2}{\pi^2}+\frac{n_1+n_2-2}{n_1} + \frac{n_1+n_2-2}{n_2}}}
\tag{16.3}\]
Using the oddsratio_to_r() function in the effectsize package we can convert \(OR\) to \(r\).
library(effectsize)# Example:# OR = 2.21, n1 = 50, n2 = 70# calculate and display correlationoddsratio_to_r(OR =2.21, n1 =50, n2 =70)
[1] 0.2124017
Viechtbauer, Wolfgang. 2010. “Conducting Meta-Analyses in R with the metafor Package.”Journal of Statistical Software 36 (3): 1–48. https://doi.org/10.18637/jss.v036.i03.