# Example:
# d = 0.60, n1 = 50, n2 = 70
library(effectsize)
<- 0.60
d <- 50
n1 <- 70
n2
d_to_oddsratio(d = d, n1 = n1, n2 = n2)
[1] 2.969162
We can calculate an odds-ratio from a between groups cohen’s \(d\) (\(d_p\)):
\[ OR = \exp\left(\frac{d_p \pi}{\sqrt{3}}\right) \tag{17.1}\]
Where \(\exp(\cdot)\) is an exponential transformation (this inverses the logarithm). Using the d_to_oddsratio
function in the effectsize
package we can convert \(d\) to \(OR\).
# Example:
# d = 0.60, n1 = 50, n2 = 70
library(effectsize)
<- 0.60
d <- 50
n1 <- 70
n2
d_to_oddsratio(d = d, n1 = n1, n2 = n2)
[1] 2.969162
We can calculate an odds ratio from a Pearson correlation using the following formula:
\[ OR = \exp\left(\frac{r\pi \sqrt{\frac{n_1+n_2-2}{n_1} + \frac{n_1+n_2-2}{n_2}}}{\sqrt{3(1-r^2)}}\right) \tag{17.2}\]
When sample sizes are equal, this equation can be simplified to be approximately,
\[ OR = \exp\left(\frac{r\pi \sqrt{4}}{\sqrt{3(1-r^2)}}\right) \tag{17.3}\]
Using the r_to_oddsratio
function in the effectsize
package we can convert \(d\) to \(OR\).
# Example:
# r = .50, n1 = 50, n2 = 70
<- .40
r <- 50
n1 <- 70
n2
r_to_oddsratio(r = r, n1 = n1, n2 = n2)
[1] 4.870584